首页> 外文期刊>Expert systems with applications >Voting features based classifier with feature construction and its application to predicting financial distress
【24h】

Voting features based classifier with feature construction and its application to predicting financial distress

机译:基于特征构造的基于特征的分类器投票及其在财务困境预测中的应用

获取原文
获取原文并翻译 | 示例

摘要

Voting features based classifiers, shortly VFC, have been shown to perform well on most real-world data sets. They are robust to irrelevant features and missing feature values. In this paper, we introduce an extension to VFC, called voting features based classifier with feature construction, VFCC for short, and show its application to the problem of predicting if a bank will encounter financial distress, by analyzing current financial statements. The previously developed VFC learn a set of rules that contain a single condition based on a single feature in their antecedent. The VFCC algorithm proposed in this work, on the other hand, constructs rules whose antecedents may contain conjuncts based on several features. Experimental results on recent financial ratios of banks in Turkey show that the VFCC algorithm achieves better accuracy than other well-known rule learning classification algorithms.
机译:事实证明,基于投票功能的分类器(简称VFC)在大多数现实世界的数据集上表现良好。它们对于不相关的特征和缺失的特征值具有鲁棒性。在本文中,我们介绍了VFC的扩展,称为具有特征构造的基于投票特征的分类器,简称VFCC,并通过分析当前财务报表将其应用于预测银行是否会遇到财务困境的问题。先前开发的VFC学习一组规则,这些规则包含基于其先行特征的单个条件。另一方面,在这项工作中提出的VFCC算法构造了一些规则,这些规则的前因可能包含基于多个特征的合取。对土耳其银行最近财务比率的实验结果表明,VFCC算法比其他知名的规则学习分类算法具有更高的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号