首页> 外文期刊>Expert Systems with Application >A comparative study of artificial neural networks, and decision trees for digital game content stocks price prediction
【24h】

A comparative study of artificial neural networks, and decision trees for digital game content stocks price prediction

机译:人工神经网络与数字游戏内容股票价格预测决策树的比较研究

获取原文
获取原文并翻译 | 示例

摘要

Precise prediction of stock prices is difficult chiefly because of the many intervening factors. Unpredictability is particularly notable in the aftermath of the global financial crisis. Data mining may however be used to discover highly correlated estimation models. This study looks at artificial neural networks (ANN), decision trees and the hybrid model of ANN and decision trees (hybrid model), the three common algorithm methods used for numerical analysis, to forecast stock prices. The author compared the stock price forecasting models derived from the three methods, and applied the models on 10 different stocks in 320 data sets in an empirical forecast. Average accuracy of ANN is 15.31%, the highest, in terms of match with real market stock prices, followed by decision trees, at 14.06%; hybrid model is 13.75%. The study also discovers that compared to the other two methods, ANN is a more stable method for predicting stock prices in the volatile post-crisis stock market.
机译:主要由于许多中间因素,很难准确预测股价。在全球金融危机之后,不可预测性尤其明显。但是,可以使用数据挖掘来发现高度相关的估计模型。本研究着眼于预测股票价格的三种常用算法方法:人工神经网络(ANN),决策树以及ANN与决策树的混合模型(混合模型)。作者比较了从这三种方法得出的股票价格预测模型,并在经验预测中将模型应用于320个数据集中的10种不同股票。 ANN的平均准确度为15.31%,是与实际市场股票价格相匹配的最高水平,其次是决策树,为14.06%;混合模型为13.75%。该研究还发现,与其他两种方法相比,ANN是在动荡的危机后股票市场中预测股票价格的更稳定的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号