首页> 外文期刊>Expert Systems with Application >Particle swarm approach for parameter optimization of quantum well nano structure
【24h】

Particle swarm approach for parameter optimization of quantum well nano structure

机译:粒子群算法在量子阱纳米结构参数优化中的应用

获取原文
获取原文并翻译 | 示例

摘要

Analytical optimization techniques suffer from slow convergence in complex solution space. Heuristics-based swarm intelligence is an efficient alternative to analytical optimization techniques. In this paper, particle swarm optimization approach is utilized for better and efficient nano-device modeling. Mobility of two-dimensional hot electrons in modulation doped square quantum well of AIGaAs/CaAs which is determined using heated drifted Fermi-Dirac distribution function and relevant scattering mechanisms is taken as the fitness/objective function. The 2D carrier concentration, quantum well width and lattice temperature of the quantum well are taken as the input variables. The algorithm with three input variables is then utilized to eet ODtimized values of inDut parameters to eet desired ac and dc mobility values.
机译:分析优化技术在复杂的解决方案空间中收敛缓慢。基于启发式的群智能是分析优化技术的有效替代方案。在本文中,粒子群优化方法被用于更好和有效的纳米设备建模。将二维热电子在AIGaAs / CaAs的调制掺杂方量子阱中的迁移率(采用加热的漂移费米-狄拉克分布函数和相关的散射机制确定)作为适应度/目标函数。输入变量为二维载流子浓度,量子阱宽度和量子阱的晶格温度。然后,利用具有三个输入变量的算法,对inDut参数的ODtimized值进行Eet处理,以生成所需的ac和dc迁移率值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号