首页> 外文期刊>Expert Systems with Application >An expansion and reranking approach for annotation-based image retrieval from Web
【24h】

An expansion and reranking approach for annotation-based image retrieval from Web

机译:用于从Web进行基于注释的图像检索的扩展和重新排序方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we introduce an expansion and reranking approach for annotation based image retrieval from Web pages. Our suggestion considers an image retrieval system using the surrounding texts nearby the image in a Web page as annotations. However, annotations may include too much and uninformative text such as copyright notice, date, author. In order to choose indexing terms effectively, we propose a term selection approach, which first expands the document using WordNet, and then selects descriptive terms among them. Notably, we applied this term selection methodology to both document and query. This is because applying either of documents or query does not help to increase retrieval performance. On the other hand, term selection process increases the number of terms per documents, and both documents and queries become more exhaustive than original. Consequently, this results high recall with low precision in retrieval. Thus, we also proposed a two-level reranking approach. In order to evaluate our approaches we have participated ImageCLEF2009 WikipediaMM subtask. The results we obtained are superior to any participating approaches and our approach has obtained the best four ranks, in text-only image retrieval. The results also showed that document expansion and effective term selection to annotations plays an important role in text-based image retrieval.
机译:在本文中,我们为基于注释的Web页面图像检索引入了一种扩展和重新排序的方法。我们的建议考虑使用一个图像检索系统,该系统使用网页中图像附近的周围文本作为注释。但是,注释可能包含过多且无用的文本,例如版权声明,日期,作者。为了有效地选择索引术语,我们提出了一种术语选择方法,该方法首先使用WordNet扩展文档,然后在其中选择描述性术语。值得注意的是,我们将此术语选择方法应用于文档和查询。这是因为应用文档或查询都无助于提高检索性能。另一方面,术语选择过程增加了每个文档的术语数量,并且文档和查询都比原始文档更加详尽。因此,这导致召回率高且检索精度低。因此,我们还提出了两级重排方法。为了评估我们的方法,我们参加了ImageCLEF2009 WikipediaMM子任务。我们获得的结果优于任何参与方法,并且在纯文本图像检索中,我们的方法获得了最好的四个等级。结果还表明,文档扩展和对注释的有效术语选择在基于文本的图像检索中起着重要作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号