首页> 外文期刊>Expert Systems with Application >A classification-based Kansei engineering system for modeling consumers' affective responses and analyzing product form features
【24h】

A classification-based Kansei engineering system for modeling consumers' affective responses and analyzing product form features

机译:基于分类的关西工程系统,用于建模消费者的情感反应并分析产品形态特征

获取原文
获取原文并翻译 | 示例

摘要

In the product design field, modeling consumers' affective responses (CARs) for product form design is very helpful for developing successful products. It is also important for product designers to identify critical product form features (PFFs) to aid them in producing appealing products. In the present paper, a classification-based Kansei engineering system (KES) is proposed for modeling CARs and analyzing PFFs in a systematic manner. First, single adjectives are collected as initial affective dimensions for consumers to evaluate a set of representative products in the first questionnaire experiment. Factor analysis (FA) combined with Procrustes analysis (PA) is then used to extract representative affective dimensions. Second, these representative adjectives are regarded as class labels for consumers to describe their affective responses toward product form design. A large set of product samples are analyzed and their PFFs are encoded into numerical format. In the second questionnaire experiment, consumers are asked to assign one most suitable class labels to each product samples. A multiclass support vector machine (SVM) classification model is constructed for relating CARs and the PFFs. Optimal training parameters of SVM can be determined by a two-step cross-validation (CV). Third, support vector machine recursive feature elimination (SVM-RFE) is applied to pin point critical PFFs by wither using overall ranking or class-specific ranking. The relative importance of each PFF can be also analyzed by examining the weight distribution of the PFFs in each elimination step. A case study of digital camera design is also given to demonstrate the effectiveness of the proposed method.
机译:在产品设计领域,为产品造型设计建模消费者的情感反应(CAR)对开发成功的产品非常有帮助。对于产品设计师来说,确定关键的产品外形特征(PFF)以帮助他们生产具有吸引力的产品也很重要。本文提出了一种基于分类的Kansei工程系统(KES),以对CAR进行建模并以系统的方式分析PFF。首先,收集单个形容词作为初始情感维度,供消费者在第一个问卷调查实验中评估一组代表性产品。然后,将因素分析(FA)与Procrustes分析(PA)相结合,以提取代表性的情感维度。其次,这些代表性形容词被视为消费者用来描述他们对产品形式设计的情感反应的类别标签。分析了大量产品样本,并将其PFF编码为数字格式。在第二个问卷调查实验中,要求消费者为每个产品样本分配一个最合适的类别标签。构建了多类支持向量机(SVM)分类模型,用于关联CAR和PFF。 SVM的最佳训练参数可以通过两步交叉验证(CV)确定。第三,支持向量机递归特征消除(SVM-RFE)通过使用整体排名或特定于类别的排名来应用于精确的关键PFF。还可以通过检查每个消除步骤中PFF的重量分布来分析每个PFF的相对重要性。并以数码相机设计为例,说明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号