首页> 外文期刊>Expert Systems with Application >Wavelet energy signatures and robust Bayesian neural network for visual quality recognition of nonwovens
【24h】

Wavelet energy signatures and robust Bayesian neural network for visual quality recognition of nonwovens

机译:小波能量签名和鲁棒贝叶斯神经网络用于无纺布视觉质量识别

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the visual quality recognition of nonwovens is considered as a common problem of pattern recognition that will be solved by a joint approach by combining wavelet energy signatures, Bayesian neural network, and outlier detection. In this research, 625 nonwovens images of 5 different grades, 125 each grade, are decomposed at 4 levels with wavelet base sym6, then two energy signatures, norm-1 L~1 and norm-2 L~2 are calculated from wavelet coefficients of each high frequency subband to train and test Bayesian neural network. To detect the outlier of training set, scaled outlier probability of training set and outlier probability of each sample are introduced. The committees of networks and the evidence criterion are employed to select the 'most suitable' model, given a set of candidate networks which has different numbers of hidden neurons. However, in our research with the finite industrial data, we take both the evidence criterion and the actual performance into account to determine the structure of Bayesian neural network. When the nonwoven images are decomposed at level 4, with 500 samples to training the Bayesian neural network that has 3 hidden neurons, the average recognition accuracy of test set is 99.2%. Experimental results on the 625 nonwoven images indicate that the wavelet energy signatures are expressive and powerful in characterizing texture of nonwoven images and the robust Bayesian neural network has excellent recognition performance.
机译:在本文中,非织造布的视觉质量识别被认为是模式识别的常见问题,将通过结合小波能量特征,贝叶斯神经网络和离群值检测的联合方法解决该问题。在这项研究中,用小波基sym6将4个级别的5个不同等级的625张非织造图像分解为4个级别,然后根据的小波系数计算两个能级特征码norm-1 L〜1和norm-2 L〜2。每个高频子带来训练和测试贝叶斯神经网络。为了检测训练集的离群值,引入了缩放的训练集离群值概率和每个样本的离群值概率。给定一组具有不同数量的隐藏神经元的候选网络,使用网络委员会和证据标准来选择“最合适的”模型。然而,在我们的有限工业数据研究中,我们同时考虑了证据标准和实际性能来确定贝叶斯神经网络的结构。当非织造图像在4级分解时,用500个样本训练具有3个隐藏神经元的贝叶斯神经网络,测试集的平均识别准确度为99.2%。在625张非织造图像上的实验结果表明,小波能量签名在表征非织造图像的纹理方面表现力强,并且强大的贝叶斯神经网络具有出色的识别性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号