首页> 外文期刊>Expert Systems with Application >A game theory-based model for product portfolio management in a competitive market
【24h】

A game theory-based model for product portfolio management in a competitive market

机译:竞争市场中基于博弈论的产品组合管理模型

获取原文
获取原文并翻译 | 示例

摘要

In today's competitive markets, effective product portfolio is critical for manufacturers that offer several products. From manufacturers' perspective, the diversity must be maintained in a level in which the engineering costs do not exceed the acquired advantages of increased market share. On the other hand, product portfolio diversity is prominent for customers. In addition, manufacturers should always be careful about competitors activity. Therefore, we consider the problem of product portfolio management (PPM) in a competitive environment. This paper constructs a game theory-based mathematical model to deal with this new PPM problem. In this presented mathematical model, the PPM problem is formulated as a 2-person non-cooperative game with complete information. Each player has a set of strategies which correspond to the feasible product portfolios. Every payoff is determined by the procedure that considers the customer-engineering interaction in product portfolio planning, which aims to optimize product portfolio for a target market segment, and proposed a maximizing surplus share model for it. Therefore, obtaining the optimal product portfolio is determined by the Nash equilibrium point of this game. Finally, a numerical example is presented to demonstrate the feasibility of the approach.
机译:在当今竞争激烈的市场中,有效的产品组合对于提供多种产品的制造商至关重要。从制造商的角度来看,多样性必须保持在一定的水平上,即工程成本不得超过获得的增加的市场份额的优势。另一方面,产品组合的多样性对于客户而言尤为重要。此外,制造商应始终注意竞争对手的活动。因此,我们考虑在竞争环境中的产品组合管理(PPM)问题。本文构建了一个基于博弈论的数学模型来解决这一新的PPM问题。在此提出的数学模型中,PPM问题被公式化为具有完整信息的2人非合作游戏。每个参与者都有一套与可行产品组合相对应的策略。每笔收益均由考虑产品组合计划中客户与工程师互动的程序确定,该程序旨在针对目标市场细分优化产品组合,并为此提出了最大化剩余份额模型。因此,获得最佳产品组合取决于该博弈的纳什均衡点。最后,通过数值算例说明了该方法的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号