首页> 外文期刊>Expert Systems with Application >An automatic diabetes diagnosis system based on LDA-Wavelet Support Vector Machine Classifier
【24h】

An automatic diabetes diagnosis system based on LDA-Wavelet Support Vector Machine Classifier

机译:基于LDA-小波支持向量机分类器的糖尿病自动诊断系统

获取原文
获取原文并翻译 | 示例

摘要

In this paper, an automatic diagnosis system for diabetes on Linear Discriminant Analysis (LDA) and Mor-let Wavelet Support Vector Machine Classifier: LDA-MWSVM is introduced. The structure of this automatic system based on LDA-MWSVM for the diagnosis of diabetes is composed of three stages: The feature extraction and feature reduction stage by using the Linear Discriminant Analysis (LDA) method and the classification stage by using Morlet Wavelet Support Vector Machine (MWSVM) classifier stage. The Linear Discriminant Analysis (LDA) is used to separate features variables between healthy and patient (diabetes) data in the first stage. The healthy and patient (diabetes) features obtained in the first stage are given to inputs of the MWSVM classifier in the second stage. Finally, in the third stage, the correct diagnosis performance of this automatic system based on LDA-MWSVM for the diagnosis of diabetes is calculated by using sensitivity and specificity analysis, classification accuracy, and confusion matrix, respectively. The classification accuracy of this system was obtained at about 89.74%.
机译:本文介绍了一种基于线性判别分析(LDA)和Mor-let小波支持向量机分类器LDA-MWSVM的糖尿病自动诊断系统。该基于LDA-MWSVM的糖尿病自动诊断系统的结构包括三个阶段:使用线性判别分析(LDA)方法的特征提取和特征缩减阶段以及使用Morlet小波支持向量机的分类阶段。 (MWSVM)分类器阶段。在第一阶段,线性判别分析(LDA)用于分离健康数据和患者(糖尿病)数据之间的特征变量。在第一阶段获得的健康和患者(糖尿病)特征在第二阶段被提供给MWSVM分类器的输入。最后,在第三阶段,分别使用敏感性和特异性分析,分类准确性和混淆矩阵,计算出基于LDA-MWSVM的自动化系统对糖尿病的正确诊断性能。该系统的分类精度约为89.74%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号