首页> 外文期刊>Expert Systems with Application >Genetic-based minimum classification error mapping for accurate identifying Peer-to-Peer applications in the internet traffic
【24h】

Genetic-based minimum classification error mapping for accurate identifying Peer-to-Peer applications in the internet traffic

机译:基于遗传的最小分类错误映射,可准确识别互联网流量中的对等应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a hybrid approach using genetic algorithm and neural networks to classify Peer-to-Peer (P2P) traffic in IP networks. We first compute the minimum classification error (MCE) matrix using genetic algorithm. The MCE matrix is then used during the pre-processing step to map the original dataset into a new space. The mapped data set is then fed to three different classifiers: distance-based, K-Nearest Neighbors, and neural networks classifiers. We measure three different indexes, namely mutual information, Dunn, and SD to evaluate the extent of separation of the data points before and after mapping is performed. The experimental results demonstrate that with the proposed mapping scheme we achieve, on average, 8% higher accuracy in classification of the P2P traffic compare to the previous solutions. Moreover, the genetic-based MCE matrix increases the classification accuracy more than what the basic MCE does.
机译:在本文中,我们提出了一种使用遗传算法和神经网络的混合方法来对IP网络中的对等(P2P)流量进行分类。我们首先使用遗传算法计算最小分类误差(MCE)矩阵。然后在预处理步骤中使用MCE矩阵将原始数据集映射到新空间中。然后,将映射的数据集提供给三个不同的分类器:基于距离的分类器,K最近邻分类器和神经网络分类器。我们测量三个不同的索引,即互信息,Dunn和SD,以评估执行映射之前和之后数据点的分离程度。实验结果表明,与以前的解决方案相比,通过提出的映射方案,我们在P2P流量分类中的平均准确率提高了8%。此外,基于遗传的MCE矩阵比基本MCE所能提高的分类精度更高。

著录项

  • 来源
    《Expert Systems with Application》 |2011年第6期|p.6417-6423|共7页
  • 作者单位

    Iran University of Science and Technology, University Road, Hengam Street, Resalat Square, Tehran 16846-13114, Iran;

    Iran University of Science and Technology, University Road, Hengam Street, Resalat Square, Tehran 16846-13114, Iran;

    Iran University of Science and Technology, University Road, Hengam Street, Resalat Square, Tehran 16846-13114, Iran;

    Iran University of Science and Technology, University Road, Hengam Street, Resalat Square, Tehran 16846-13114, Iran;

    Iran University of Science and Technology, University Road, Hengam Street, Resalat Square, Tehran 16846-13114, Iran;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    genetic algorithm; minimum classification error; packet classification;

    机译:遗传算法;最小分类误差;分组分类;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号