首页> 外文期刊>Expert Systems with Application >Hybrid intelligent technique for automatic communication signals recognition using Bees Algorithm and MLP neural networks based on the efficient features
【24h】

Hybrid intelligent technique for automatic communication signals recognition using Bees Algorithm and MLP neural networks based on the efficient features

机译:基于有效特征的基于Bees算法和MLP神经网络的混合智能技术用于自动通信信号识别

获取原文
获取原文并翻译 | 示例

摘要

Automatic communication signal recognition plays an important role for many novel computer and communication technologies. Most of the proposed techniques can only identify a few kinds of digital signal and/or low order of them. They usually require high levels of signal to noise ratio (SNR). In this paper, we investigate twofold. First, we propose an efficient system that uses a combination set of spectral characteristics and higher order moments up to eighth and higher order cumulants up to eighth as the effective features. As the classifier we used a multi-layer perceptron (MLP) neural network. In this stage we investigate different learning algorithms of MLP neural networks that some of them, such as quick prop (QP) learning algorithm, extended delta-bar-delta (EDBD), super self adaptive back propagation (SuperSAB) and conjugate gradient (CG) are proposed for the first time in the area of communication signals recognition. Experimental results show that proposed system discriminates a lot of digital communication signals with high accuracy even at very low SNRs. But a lot of features are used for this recognition. Then at the second fold, in order to reduce the complexity of the recognizer, we have proposed a novel hybrid intelligent technique. In this technique we have optimized the classifier design by Bees Algorithm (BA) for selection of the best features that are fed to the classifier. Simulation results show that the proposed technique has very high recognition accuracy with seven features selected by BA.
机译:自动通信信号识别对于许多新颖的计算机和通信技术都起着重要的作用。大多数提出的技术只能识别几种数字信号和/或它们的低阶。它们通常需要高水平的信噪比(SNR)。在本文中,我们进行了双重研究。首先,我们提出了一种有效的系统,该系统使用频谱特征和高达八分之一的高阶矩以及高达八分之一的高阶累积量的组合作为有效特征。作为分类器,我们使用了多层感知器(MLP)神经网络。在这一阶段,我们研究了MLP神经网络的不同学习算法,其中包括快速支持(QP)学习算法,扩展delta-bar-delta(EDBD),超自适应反向传播(SuperSAB)和共轭梯度(CG)等。 )是在通信信号识别领域首次提出的。实验结果表明,即使在非常低的SNR情况下,所提出的系统也能以很高的精度区分许多数字通信信号。但是很多功能都用于这种识别。然后在第二个方面,为了降低识别器的复杂性,我们提出了一种新颖的混合智能技术。在这项技术中,我们优化了Bees算法(BA)的分类器设计,以选择提供给分类器的最佳功能。仿真结果表明,该算法具有很高的识别精度,并具有BA选择的7个特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号