首页> 外文期刊>Expert Systems with Application >A hybrid particle swarm optimization with estimation of distribution algorithm for solving permutation flowshop scheduling problem
【24h】

A hybrid particle swarm optimization with estimation of distribution algorithm for solving permutation flowshop scheduling problem

机译:求解调度流水车间调度问题的带分布估计的混合粒子群算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper we propose PSO-EDA, a hybrid particle swarm optimization (PSO) with estimation of distribution algorithm (EDA) to solve permutation flowshop scheduling problem (PFSP). PFSP is an NP-com-plete problem, for which PSO was recently applied. The social cognition in the metaphor of canonical PSO is incomplete, since information conveyed in the non-gbest particles is lost. Also, the intelligence of the particles is totally neglected by the canonical PSO and most of other literatures. To tackle such problems, we propose to enable the sharing of information from the collective experience of the swarm by hybridizing an EDA operator with PSO and to add the primitive intelligence to each particle by using a local search mechanism. To enhance the performance of the algorithm proposed, a new local search algorithm, the minimization-of-waiting-time local search (MWL), is applied. The computational experiment on different benchmark suites in PFSP, in which two new best known solutions have been found, shows a superiority of PSO-EDA over other counterpart algorithms in terms of accuracy.
机译:在本文中,我们提出了PSO-EDA,这是一种具有分布估计算法(EDA)的混合粒子群优化(PSO),用于解决置换流水车间调度问题(PFSP)。 PFSP是一个NP完全问题,最近已应用PSO。规范PSO隐喻中的社会认知是不完整的,因为在非最佳粒子中传递的信息会丢失。同样,规范的PSO和大多数其他文献都完全忽略了粒子的智能。为了解决此类问题,我们建议通过将EDA运算符与PSO混合,使来自群体集体经验的信息共享,并通过使用本地搜索机制为每个粒子添加原始智能。为了提高所提出算法的性能,应用了一种新的本地搜索算法,即等待时间最小化本地搜索(MWL)。在PFSP的不同基准套件上进行的计算实验(发现了两个新的最著名的解决方案)显示出PSO-EDA在准确性方面优于其他同类算法。

著录项

  • 来源
    《Expert Systems with Application》 |2011年第4期|p.4348-4360|共13页
  • 作者单位

    State Key Lab of Digital Manufacturing Equipment and Technology, Department of Industrial and Manufacturing System Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, 430074 Wuhan, China;

    State Key Lab of Digital Manufacturing Equipment and Technology, Department of Industrial and Manufacturing System Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, 430074 Wuhan, China;

    College of Computer Science, Liaocheng University, 252059 Liaocheng China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    pso; eda; metaheuristics; flowshop;

    机译:pso;eda;metaheuristics;flowshop;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号