首页> 外文期刊>Expert Systems with Application >Unsupervised image retrieval framework based on rule base system
【24h】

Unsupervised image retrieval framework based on rule base system

机译:基于规则库系统的无监督图像检索框架

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces unsupervised image retrieval framework based on a rule base system. The proposed framework makes use of geometric moments (GMs) for features extraction. The main advantage with the GMs is that image coordinate transformations can be easily expressed and analyzed in terms of the corresponding transformations in the moment space. These features are used to perform the image mining for acquiring clustering knowledge from a large empirical images database. Irrelevance between images of the same cluster is precisely considered in the proposed framework through a relevant feedback phase followed by a novel clustering refinement model. The images and their corresponding classes pass to a rule base algorithm for extracting a set of accurate rules. These rules are pruning and may reduce the dimensionality of the extracted features. The advantage of the proposed framework is reflected in the retrieval process, which is limited to the images in the class of rule matched with the query image features. Experiments show that the proposed model achieves a very good performance in terms of the average precision, recall and retrieval time compared with other models.
机译:本文介绍了一种基于规则库系统的无监督图像检索框架。所提出的框架利用几何矩(GMs)进行特征提取。 GM的主要优势在于,可以根据矩空间中的相应变换轻松表达和分析图像坐标变换。这些功能用于执行图像挖掘,以从大型经验图像数据库中获取聚类知识。在建议的框架中,通过相关的反馈阶段以及新颖的聚类细化模型,可以精确地考虑相同聚类图像之间的不相关性。图像及其对应的类别传递给规则库算法,以提取一组准确的规则。这些规则已被修剪,可能会降低提取特征的维数。提出的框架的优势体现在检索过程中,该过程仅限于与查询图像特征匹配的规则类别中的图像。实验表明,与其他模型相比,该模型在平均精度,召回率和检索时间上均取得了很好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号