首页> 外文期刊>Expert systems with applications >Artificial neural networks solution to display residual hoop stress field encircling a split-sleeve cold expanded aircraft fastener hole
【24h】

Artificial neural networks solution to display residual hoop stress field encircling a split-sleeve cold expanded aircraft fastener hole

机译:人工神经网络解决方案,用于显示围绕环缝冷扩飞机紧固件孔的残余环向应力场

获取原文
获取原文并翻译 | 示例

摘要

Cold expansion of holes is a technique, generating intricate three-dimensional residual stresses around fastener holes essentially vital for airplane fatigue resistance. In this work, attention was given to Artificial Neural Networks (ANN) modeling to build up and train simulations of stress topography surrounding a 4% expanded hole. For this, experimental data of recently abridged step drilling-Fourier method was employed. At input layer of ANN; information available for steps through thickness and radial directions, angular variation around the hole, and at output layer, residual hoop stresses were exercised to train and test multilayered, hierarchically connected and directed networks with varying number of hidden layers. It was shown that Levenberg-Marquardt (LM) model with 9 neurons in hidden layer yielded the best of the results, as error percentages were remarkably small both in training and testing sequences. Several results of step drilling-Fourier solution (ATOzdemir method), diffraction methods and current ANN predictions were overlaid and similarities in residual stress distributions perceived to valid only at regions where strain gradient was not changing precipitously. Nevertheless, best fit to strain data at confusing zones was achieved after ANN modeling.
机译:孔的冷膨胀是一种技术,它会在紧固件孔周围产生复杂的三维残余应力,这对于抵抗飞机疲劳至关重要。在这项工作中,注意力集中在人工神经网络(ANN)建模上,以建立和训练围绕4%扩孔的应力形貌的模拟。为此,采用了最近节节钻探傅立叶法的实验数据。在ANN的输入层;可提供有关厚度和径向方向,孔周围角度变化以及输出层上的步骤的信息,使用残余环向应力来训练和测试具有不同数量隐藏层的多层,层次连接和定向网络。结果表明,隐藏层中有9个神经元的Levenberg-Marquardt(LM)模型产生了最好的结果,因为在训练和测试序列中错误率都非常小。叠加了逐步钻孔-傅里叶解(ATOzdemir方法),衍射方法和当前的ANN预测的一些结果,并且残余应力分布的相似性仅在应变梯度没有急剧变化的区域才有效。然而,在人工神经网络建模之后,实现了在混淆区域的应变数据的最佳拟合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号