首页> 外文期刊>Expert systems with applications >Multi objective association rule mining with genetic algorithm without specifying minimum support and minimum confidence
【24h】

Multi objective association rule mining with genetic algorithm without specifying minimum support and minimum confidence

机译:使用遗传算法的多目标关联规则挖掘,没有指定最小支持和最小置信度

获取原文
获取原文并翻译 | 示例

摘要

Multi objective processing can be leveraged for mining the association rules. This paper discusses the application of multi objective genetic algorithm to association rule mining. We focus our attention especially on association rule mining. This paper proposes a method based on genetic algorithm without taking the minimum support and confidence into account. In order to improve algorithm efficiency, we apply the FP-tree algorithm. Our method extracts the best rules that have best correlation between support and confidence. The operators of our method are flexible for changing the fitness. Unlike the Apriori-based algorithm, it does not depend on support. Experimental study shows that our technique outperforms the traditional methods.
机译:可以利用多目标处理来挖掘关联规则。本文讨论了多目标遗传算法在关联规则挖掘中的应用。我们将注意力集中在关联规则挖掘上。本文提出了一种基于遗传算法的方法,该方法不考虑最小的支持和置信度。为了提高算法效率,我们应用了FP-tree算法。我们的方法提取出在支持和信心之间具有最佳关联的最佳规则。我们方法的运算符可以灵活更改适应性。与基于Apriori的算法不同,它不依赖于支持。实验研究表明,我们的技术优于传统方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号