首页> 外文期刊>Expert systems with applications >Two-stage structural damage detection using fuzzy neural networks and data fusion techniques
【24h】

Two-stage structural damage detection using fuzzy neural networks and data fusion techniques

机译:基于模糊神经网络和数据融合技术的两阶段结构损伤检测

获取原文
获取原文并翻译 | 示例

摘要

It is proposed in this paper a novel two-stage structural damage detection approach using fuzzy neural networks (FNNs) and data fusion techniques. The method is used for structural health monitoring and damage detection, particularly for cases where the measurement data is enormous and with uncertainties. In the first stage of structural damage detection, structural modal parameters derived from structural vibration responses are fed into an FNN as the input. The output values from the FNN are defuzzified to produce a rough structural damage assessment. Later, in the second stage, the values output from three different FNN models are input directly to the data fusion center where fusion computation is performed. The final fusion decision is made by filtering the result with a threshold function, hence a refined structural damage assessment of superior reliability. The proposed approach has been applied to a 7-degree of freedom building model for structural damage detection, and proves to be feasible, efficient and satisfactory. Furthermore, the simulation result also shows that the identification accuracy can be boosted with the proposed approach instead of FNN models alone.
机译:本文提出了一种使用模糊神经网络(FNN)和数据融合技术的新型两阶段结构损伤检测方法。该方法用于结构健康监测和损伤检测,特别是在测量数据巨大且不确定的情况下。在结构损伤检测的第一阶段,将从结构振动响应派生的结构模态参数输入到FNN中作为输入。对FNN的输出值进行模糊化处理,以进行粗略的结构损伤评估。随后,在第二阶段中,将从三个不同的FNN模型输出的值直接输入到执行融合计算的数据融合中心。最终的融合决策是通过使用阈值函数对结果进行过滤来做出的,因此可以对结构进行可靠的评估,从而获得更高的可靠性。所提出的方法已经应用于结构损伤检测的7自由度构建模型,并被证明是可行,有效和令人满意的。此外,仿真结果还表明,所提出的方法可以代替单独的FNN模型来提高识别精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号