首页> 外文期刊>Expert Systems with Application >The effectiveness of image features based on fractal image coding for image annotation
【24h】

The effectiveness of image features based on fractal image coding for image annotation

机译:基于分形图像编码的图像特征对图像标注的有效性

获取原文
获取原文并翻译 | 示例

摘要

Image annotation is a process of assigning metadata to digital images in the form of captions or keywords, and has been regarded as image management and one of the most crucial processes of image retrieval. And many automatic methods have been proposed. However, these methods still have some problems respectively. Fractals are fragmented geometries and can be considered separate parts; each part is similar to the contracted overall shape. Fractal features provide geometric information of an image that is irrelevant to the shape and size of an object in the image; therefore, fractal features are more robust than color and texture features. Therefore, this study proposed a fractal-driven image annotation (FIA) schema that extracts fractal features through fractal image coding and integrates color and texture as new visual features to conduct image-based annotation. Experimental results indicate that the effect of thresholds on annotating accuracy is insignificant. This finding supports the application of FIA on complex practical environments, reduces the time for identifying the optimal thresholds, and improves the practicality of using FIA in real environments.
机译:图像批注是将标题或关键字形式的元数据分配给数字图像的过程,被视为图像管理和图像检索的最关键过程之一。并且已经提出了许多自动方法。但是,这些方法仍然分别存在一些问题。分形是零散的几何形状,可以视为独立的部分。每个零件都类似于收缩的整体形状。分形特征提供的图像几何信息与图像中对象的形状和大小无关;因此,分形特征比颜色和纹理特征更健壮。因此,本研究提出了一种分形驱动的图像标注(FIA)模式,该模式通过分形图像编码提取分形特征,并将颜色和纹理作为新的视觉特征进行集成,以进行基于图像的标注。实验结果表明,阈值对注释精度的影响不明显。该发现支持FIA在复杂的实际环境中的应用,减少了确定最佳阈值的时间,并提高了在真实环境中使用FIA的实用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号