首页> 外文期刊>Expert Systems with Application >A multi-agent data mining system for cartel detection in Brazilian government procurement
【24h】

A multi-agent data mining system for cartel detection in Brazilian government procurement

机译:巴西政府采购中用于卡特尔检测的多代理数据挖掘系统

获取原文
获取原文并翻译 | 示例

摘要

The main focus of this research project is the problem of extracting useful information from the Brazilian federal procurement process databases used by government auditors in the process of corruption detection and prevention to identify cartel formation among applicants. Extracting useful information to enhance cartel detection is a complex problem from many perspectives due to the large volume of data used to correlate information and the dynamic and diversified strategies companies use to hide their fraudulent operations. To attack the problem of data volume, we have used two data mining model functions, clustering and association rules, and a multi-agent approach to address the dynamic strategies of companies that are involved in cartel formation. To integrate both solutions, we have developed AGMI, an agent-mining tool that was validated using real data from the Brazilian Office of the Comptroller General, an institution of government auditing, where several measures are currently used to prevent and fight corruption. Our approach resulted in explicit knowledge discovery because AGMI presented many association rules that provided a 90% correct identification of cartel formation, according to expert assessment. According to auditing specialists, the extracted knowledge could help in the detection, prevention and monitoring of cartels that act in public procurement processes.
机译:该研究项目的主要重点是从巴西联邦采购过程数据库中提取有用信息的问题,该数据库由政府审计员在腐败发现和预防过程中用来识别申请人中的卡特尔形成。从许多角度来看,提取有用的信息以增强卡特尔检测是一个复杂的问题,这是因为用于关联信息的大量数据以及公司用来隐藏其欺诈行为的动态且多样化的策略。为了解决数据量问题,我们使用了两个数据挖掘模型函数,聚类和关联规则以及一种多主体方法来解决参与卡特尔形成的公司的动态策略。为了集成这两种解决方案,我们开发了AGMI,这是一种代理挖掘工具,已使用来自巴西总审计长办公室(政府审计机构)的真实数据进行了验证,该办公室目前使用多种措施预防和打击腐败。根据专家评估,我们的方法导致了明确的知识发现,因为AGMI提出了许多关联规则,这些规则提供了90%的卡特尔形成正确识别。根据审计专家的说法,所提取的知识可以帮助检测,预防和监控在公共采购过程中发挥作用的卡特尔。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号