首页> 外文期刊>Expert Systems with Application >Semantic management of multiple contexts in a pervasive computing framework
【24h】

Semantic management of multiple contexts in a pervasive computing framework

机译:普适计算框架中的多个上下文的语义管理

获取原文
获取原文并翻译 | 示例

摘要

Mobile devices can perceive greater details of user states with the increasing integration of mobile sensors into a pervasive computing framework, yet they consume large amounts of batteries and computational resources. This paper proposes a semantic management method which efficiently integrates multiple contexts into the mobile system by analyzing the semantic hierarchy and temporal relations. The proposed method semantically decides the recognition order of the contexts and identifies each context using a corresponding dynamic Bayesian network (DBN). To sort out the contexts, we designed a semantic network using a knowledge-driven approach, whereas DBNs are constructed with a data-driven approach. The proposed method was validated on a pervasive computing framework, which included multiple mobile sensors (such as motion sensors, data-gloves, and bio-signal sensors). Experimental results showed that the semantic management of multiple contexts dramatically reduced the recognition cost.
机译:随着移动传感器越来越多地集成到普及的计算框架中,移动设备可以感知用户状态的更多细节,但是它们消耗大量的电池和计算资源。本文提出了一种语义管理方法,该方法通过分析语义层次和时间关系来有效地将多个上下文集成到移动系统中。所提出的方法在语义上确定上下文的识别顺序,并使用相应的动态贝叶斯网络(DBN)标识每个上下文。为了对上下文进行分类,我们使用知识驱动的方法设计了语义网络,而DBN是使用数据驱动的方法构造的。所提出的方法已在包括多个移动传感器(例如运动传感器,数据手套和生物信号传感器)的普适计算框架上得到了验证。实验结果表明,多种上下文的语义管理大大降低了识别成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号