首页> 外文期刊>Expert Systems with Application >A novel statistical feature extraction method for textual images: Optical font recognition
【24h】

A novel statistical feature extraction method for textual images: Optical font recognition

机译:一种新的文本图像统计特征提取方法:光学字体识别

获取原文
获取原文并翻译 | 示例

摘要

The binary image is essential to image formats where the textual image is the best example of the binary image representation. Feature extraction is a fundamental process in pattern recognition. In this regard, pattern recognition studies involve document analysis techniques. Optical font recognition is among the pattern recognition techniques that are becoming popular today. In this paper, we propose an enhanced global feature extraction method based on the on statistical analysis of the behavior of edge pixels in binary images. A novel method in feature extraction for binary images has been proposed whereby the behavior of the edge pixels between a white background and a black pattern in a binary image captures information about the properties of the pattern. The proposed method is tested on an Arabic calligraphic script image for an optical font recognition application. To evaluate the performance of our proposed method, we compared it with a gray-level co occurrence matrix (GLCM). We classified the features using a multilayer artificial immune system, a Bayesian network, decision table rules, a decision tree, and a multilayer network to identify which approach is most suitable for our proposed method. The results of the experiments show that the proposed method with a decision tree classifier can boost the overall performance of optical font recognition.
机译:对于文本格式是二进制图像表示形式的最佳示例的图像格式,二进制图像至关重要。特征提取是模式识别的基本过程。在这方面,模式识别研究涉及文档分析技术。光学字体识别是当今越来越流行的模式识别技术之一。在本文中,我们基于对二值图像中边缘像素行为的统计分析,提出了一种增强的全局特征提取方法。已经提出了一种用于二值图像的特征提取的新颖方法,由此,二值图像中的白色背景和黑色图案之间的边缘像素的行为捕获了关于图案特性的信息。在光学字体识别应用程序的阿拉伯书法文字图像上测试了该方法。为了评估我们提出的方法的性能,我们将其与灰度共生矩阵(GLCM)进行了比较。我们使用多层人工免疫系统,贝叶斯网络,决策表规则,决策树和多层网络对特征进行分类,以确定哪种方法最适合我们提出的方法。实验结果表明,提出的带有决策树分类器的方法可以提高光学字体识别的整体性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号