首页> 外文期刊>Expert Systems with Application >A multivariate model of fuzzy integrated logical forecasting method (M-FILF) and multiplicative time series clustering: A model of time-varying volatility for dry cargo freight market
【24h】

A multivariate model of fuzzy integrated logical forecasting method (M-FILF) and multiplicative time series clustering: A model of time-varying volatility for dry cargo freight market

机译:模糊综合逻辑预测方法(M-FILF)和可乘时间序列聚类的多元模型:干货市场的时变波动性模型

获取原文
获取原文并翻译 | 示例

摘要

The aim of this paper is to improve the fuzzy logical forecasting model (FILF) by utilizing multivariate inference and the partitioning problem for an exponentially distributed time series by using a multiplicative clustering approach. Fuzzy time series (FTS) is a growing study field in computer science and its superiority is indicated frequently. Since the conventional time series analysis requires various preconditions, the FTS framework is very useful and convenient for many problems in business practice. This paper particularly investigates pricing problems in the shipping business and price-volatility relationship is the theoretical point of the proposed approach. Both FTS and conventional time series results are comparatively presented in the final section and superiority of the proposed method is explicitly noted.
机译:本文的目的是通过利用多元推理和乘性聚类方法,针对指数分布时间序列的多变量推理和分区问题,改进模糊逻辑预测模型(FILF)。模糊时间序列(FTS)是计算机科学中一个正在发展的研究领域,其优越性经常得到体现。由于常规的时间序列分析需要各种前提条件,因此FTS框架对于业务实践中的许多问题非常有用且方便。本文特别研究了航运业务中的定价问题,并且价格-波动关系是所提出方法的理论要点。 FTS和常规时间序列结果都在最后一节中进行了比较介绍,并且明确指出了所提出方法的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号