首页> 外文期刊>Expert Systems with Application >A hybrid system integrating signal analysis and probabilistic neural network for user motion detection in wireless networks
【24h】

A hybrid system integrating signal analysis and probabilistic neural network for user motion detection in wireless networks

机译:集成信号分析和概率神经网络的混合系统,用于无线网络中的用户运动检测

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a novel user motion detection (UMD) model called PNN-MSMD and its application on seamless handoff. The PNN-MSMD uses a novel signal analysis model to identify the movement of a mobile device without using a location system. The PNN-MSMD integrates multiple signal processing sensors with probabilistic neural network (PNN) to analyze the received signal strength (RSS) of a mobile device. The PNN uses the variation of RSS derived from the sensors as input training data to learn the moving patterns and generate the classification rules for detecting the motion state of a mobile device. The detection results can help mobile devices to enhance handoff processes. Computer simulations show that the proposed PNN-MSMD based handoff algorithm performs better than four traditional handoff algorithms and two motion detection based handoff algorithms. The PNN-MSMD method can save up to 82.56% power consumption and reduce up to 42.51% number of handoffs.
机译:本文提出了一种新颖的用户运动检测(UMD)模型,称为PNN-MSMD及其在无缝切换中的应用。 PNN-MSMD使用新颖的信号分析模型来识别移动设备的运动,而无需使用定位系统。 PNN-MSMD将多个信号处理传感器与概率神经网络(PNN)集成在一起,以分析移动设备的接收信号强度(RSS)。 PNN使用从传感器获得的RSS的变化作为输入训练数据来学习运动模式并生成用于检测移动设备运动状态的分类规则。检测结果可以帮助移动设备增强切换过程。计算机仿真表明,所提出的基于PNN-MSMD的切换算法的性能优于四种传统的切换算法和两种基于运动检测的切换算法。 PNN-MSMD方法可以节省多达82.56%的功耗,并减少多达42.51%的切换次数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号