首页> 外文期刊>Expert Systems with Application >A multi-level matching method with hybrid similarity for document retrieval
【24h】

A multi-level matching method with hybrid similarity for document retrieval

机译:一种具有混合相似度的多级匹配方法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a multi-level matching method for document retrieval (DR) using a hybrid document similarity. Documents are represented by multi-level structure including document level and paragraph level. This multi-level-structured representation is designed to model underlying semantics in a more flexible and accurate way that the conventional flat term histograms find it hard to cope with. The matching between documents is then transformed into an optimization problem with Earth Mover's Distance (EMD). A hybrid similarity is used to synthesize the global and local semantics in documents to improve the retrieval accuracy. In this paper, we have performed extensive experimental study and verification. The results suggest that the proposed method works well for lengthy documents with evident spatial distributions of terms.
机译:本文提出了一种使用混合文档相似度的文档检索(DR)的多级匹配方法。文档由多级结构表示,包括文档级和段落级。这种多层次的表示形式旨在以一种更灵活,更准确的方式对基础语义建模,而传统的扁平术语直方图则难以应对。然后,将文档之间的匹配转换为地球移动者距离(EMD)的优化问题。混合相似度用于合成文档中的全局和局部语义,以提高检索精度。在本文中,我们进行了广泛的实验研究和验证。结果表明,所提出的方法对于具有明显空间分布的冗长文档非常有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号