首页> 外文期刊>Expert Systems with Application >Mass appraisal of residential apartments: An application of Random forest for valuation and a CART-based approach for model diagnostics
【24h】

Mass appraisal of residential apartments: An application of Random forest for valuation and a CART-based approach for model diagnostics

机译:住宅公寓的大规模评估:Random forest在评估中的应用以及基于CART的模型诊断方法

获取原文
获取原文并翻译 | 示例

摘要

To the best knowledge of authors, the use of Random forest as a potential technique for residential estate mass appraisal has been attempted for the first time. In the empirical study using data on residential apartments the method performed better than such techniques as CHAID, CART, KNN, multiple regression analysis, Artificial Neural Networks (MLP and RBF) and Boosted Trees. An approach for automatic detection of segments where a model significantly underperforms and for detecting segments with systematically under- or overestimated prediction is introduced. This segmentational approach is applicable to various expert systems including, but not limited to, those used for the mass appraisal.
机译:据作者所知,首次尝试将随机森林作为一种潜在的技术用于住宅群评估。在使用住宅公寓数据的实证研究中,该方法的性能优于CHAID,CART,KNN,多元回归分析,人工神经网络(MLP和RBF)和Boosted Trees等技术。引入了一种方法,该方法用于自动检测模型效果明显不佳的细分,以及用于通过系统地低估或高估预测来检测细分。这种细分方法适用于各种专家系统,包括但不限于用于大规模评估的专家系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号