首页> 外文期刊>Expert systems with applications >Indirect adaptive self-organizing RBF neural controller design with a dynamical training approach
【24h】

Indirect adaptive self-organizing RBF neural controller design with a dynamical training approach

机译:带有动态训练方法的间接自适应自组织RBF神经控制器设计

获取原文
获取原文并翻译 | 示例

摘要

This study proposes an indirect adaptive self-organizing RBF neural control (IASRNC) system which is composed of a feedback controller, a neural identifier and a smooth compensator. The neural identifier which contains a self-organizing RBF (SORBF) network with structure and parameter learning is designed to online estimate a system dynamics using the gradient descent method. The SORBF network can add new hidden neurons and prune insignificant hidden neurons online. The smooth compensator is designed to dispel the effect of minimum approximation error introduced by the neural identifier in the Lyapunov stability theorem. In general, how to determine the learning rate of parameter adaptation laws usually requires some trial-and-error tuning procedures. This paper proposes a dynamical learning rate approach based on a discrete-type Lyapunov function to speed up the convergence of tracking error. Finally, the proposed IASRNC system is applied to control two chaotic systems. Simulation results verify that the proposed IASRNC scheme can achieve a favorable tracking performance.
机译:本研究提出了一种间接自适应自组织RBF神经控制(IASRNC)系统,该系统由反馈控制器,神经识别器和平滑补偿器组成。神经识别器包含具有结构和参数学习功能的自组织RBF(SORBF)网络,旨在使用梯度下降法在线估计系统动力学。 SORBF网络可以在线添加新的隐藏神经元和修剪无关紧要的隐藏神经元。平滑补偿器旨在消除Lyapunov稳定性定理中由神经识别器引入的最小逼近误差的影响。通常,如何确定参数自适应定律的学习率通常需要一些反复试验的过程。本文提出了一种基于离散型Lyapunov函数的动态学习速率方法,以加快跟踪误差的收敛速度。最后,将所提出的IASRNC系统应用于控制两个混沌系统。仿真结果验证了所提出的IASRNC方案可以实现良好的跟踪性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号