首页> 外文期刊>Expert systems with applications >A tree-based-trend-diffusion prediction procedure for small sample sets in the early stages of manufacturing systems
【24h】

A tree-based-trend-diffusion prediction procedure for small sample sets in the early stages of manufacturing systems

机译:在制造系统的早期阶段,针对小样本集的基于树的趋势扩散预测程序

获取原文
获取原文并翻译 | 示例

摘要

Product life cycles are becoming shorter, especially in the electronics industry. The issue of time to market has thus become a core competency for firms to increase market share. In order to shorten the cycle time from product design to mass production, engineers must often make decisions under uncertain conditions with limited information. Although machine learning algorithms can help derive useful information, the smallest training sample size required to establish robust models is important to know, as with insufficient data size the models produced may be unreliable. This research develops a two-phase procedure for small-data-set learning problems at pilot run stage and takes the multi-layer ceramic capacitor case as an example to figure out a precise model which concretely represents the learned process knowledge to help shorten the lead-time before mass production. The results reveal that it is possible to rapidly develop a model of production with limited data from pilot runs.
机译:产品生命周期越来越短,尤其是在电子行业。因此,上市时间问题已成为企业增加市场份额的核心能力。为了缩短从产品设计到批量生产的周期时间,工程师必须经常在不确定的条件下利用有限的信息来做出决策。尽管机器学习算法可以帮助获取有用的信息,但要了解建立健壮模型所需的最小培训样本大小,还是很重要的,因为如果数据大小不足,则生成的模型可能会不可靠。这项研究针对试运行阶段的小数据集学习问题开发了一个两阶段程序,并以多层陶瓷电容器为例,得出了一个精确模型,该模型具体地代表了所学的过程知识,以帮助缩短引线。量产之前的时间。结果表明,有可能使用有限的试运行数据快速开发生产模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号