首页> 外文期刊>Expert systems with applications >Trust based recommender system using ant colony for trust computation
【24h】

Trust based recommender system using ant colony for trust computation

机译:使用蚁群进行信任度计算的基于信任度的推荐系统

获取原文
获取原文并翻译 | 示例

摘要

Collaborative Filtering (CF) technique has proven to be promising for implementing large scale recom-mender systems but its success depends mainly on locating similar neighbors. Due to data sparsity of the user-item rating matrix, the process of finding similar neighbors does not often succeed. In addition to this, it also suffers from the new user (cold start) problem as finding possible neighborhood and giving recommendations to user who has not rated any item or rated very few items is difficult. In this paper, our proposed Trust based Ant Recommender System (TARS) produces valuable recommendations by incorporating a notion of dynamic trust between users and selecting a small and best neighborhood based on biological metaphor of ant colonies. Along with the predicted ratings, displaying additional information for explanation of recommendations regarding the strength and level of connectedness in trust graph from where recommendations are generated, items and number of neighbors involved in predicting ratings can help active user make better decisions. Also, new users can highly benefit from pher-omone updating strategy known from ant algorithms as positive feedback in the form of aggregated dynamic trust pheromone defines "popularity" of a user as recommender over a period of time. The performance of TARS is evaluated using two datasets of different sparsity levels viz. Jester dataset and MovieLens dataset (available online) and compared with traditional Collaborative Filtering based approach for generating recommendations.
机译:事实证明,协作过滤(CF)技术对于实施大规模推荐系统很有希望,但其成功主要取决于定位相似的邻居。由于用户项目评分矩阵的数据稀疏性,查找相似邻居的过程通常不会成功。除此之外,它还遭受新用户(冷启动)问题的困扰,因为很难找到可能的邻域并向未给任何项目评分或很少评分的用户推荐建议。在本文中,我们提出的基于信任的蚂蚁推荐系统(TARS)通过合并用户之间的动态信任概念并根据蚂蚁群体的生物隐喻选择一个小的最佳邻域,从而提出了有价值的建议。与预测的收视率一起,显示其他信息以解释有关信任图中连接强度和级别的推荐建议,从中可生成推荐,预测收视率所涉及的邻居的项目和数量可以帮助活跃用户做出更好的决策。同样,新用户可以从蚂蚁算法已知的信息素更新策略中受益匪浅,因为它以正反馈的形式聚集了动态信任信息素,从而在一段时间内将用户的“受欢迎程度”定义为推荐者。使用两个不同稀疏度的数据集来评估TARS的性能。 Jester数据集和MovieLens数据集(可在线获得),并与传统的基于协作过滤的方法进行比较以生成推荐。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号