首页> 外文期刊>Expert systems with applications >Delay-dependent robust asymptotic state estimation of Takagi-Sugeno fuzzy Hopfield neural networks with mixed interval time-varying delays
【24h】

Delay-dependent robust asymptotic state estimation of Takagi-Sugeno fuzzy Hopfield neural networks with mixed interval time-varying delays

机译:混合区间时变时滞的Takagi-Sugeno模糊Hopfield神经网络的时滞相关鲁棒渐近状态估计

获取原文
获取原文并翻译 | 示例

摘要

This paper investigates delay-dependent robust asymptotic state estimation of fuzzy neural networks with mixed interval time-varying delay. In this paper, the Takagi-Sugeno (T-S) fuzzy model representation is extended to the robust state estimation of Hopfield neural networks with mixed interval time-varying delays. The main purpose is to estimate the neuron states, through available output measurements such that for all admissible time delays, the dynamics of the estimation error is globally asymptotically stable. Based on the Lyapunov-Krasovskii functional which contains a triple-integral term, delay-dependent robust state estimation for such T-S fuzzy Hopfield neural networks can be achieved by solving a linear matrix inequality (LMI), which can be easily facilitated by using some standard numerical packages. The unknown gain matrix is determined by solving a delay-dependent LMI. Finally two numerical examples are provided to demonstrate the effectiveness of the proposed method.
机译:研究了带有混合区间时变时滞的模糊神经网络的时滞相关鲁棒渐近状态估计。本文将Takagi-Sugeno(T-S)模糊模型表示扩展到具有混合间隔时变时延的Hopfield神经网络的鲁棒状态估计。主要目的是通过可用的输出测量来估计神经元状态,以使得对于所有允许的时间延迟,估计误差的动力学全局渐近稳定。基于包含三重积分项的Lyapunov-Krasovskii泛函,可以通过求解线性矩阵不等式(LMI)来实现此类TS模糊Hopfield神经网络的依赖于时延的鲁棒状态估计,这可以通过使用一些标准轻松实现数字包。通过求解依赖于延迟的LMI来确定未知增益矩阵。最后,通过两个数值算例验证了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号