机译:模糊关联规则挖掘方法可增强预测性能
School of Computing Informatics & Media, University of Bradford, Bradford, West Yorkshire BD7 1DP, UK;
School of Computing Informatics & Media, University of Bradford, Bradford, West Yorkshire BD7 1DP, UK;
Computational Intelligence Croup, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK;
Computational Intelligence Croup, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK;
Computational Intelligence Croup, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK;
Apriori algorithms; Data mining; Fuzzy C-Mean; Knowledge discovery; Prediction; Fuzzy association rules;
机译:大型社交媒体上基于并行半监督增强型模糊联合聚类(PSEFC)和快速关联规则挖掘(RARM)的频繁路线挖掘算法推荐行程
机译:使用地图减少模糊关联规则挖掘算法来自No-SQL数据基础的挖掘关联规则
机译:基于多目标遗传算法的优化模糊关联规则挖掘方法
机译:使用改进的聚类技术和模糊关联规则挖掘方法的零售业绩效预测
机译:基于模糊关联规则挖掘的模糊分类
机译:模糊关联规则的挖掘和分类在韩国的疟疾预测中
机译:增强模糊关联规则挖掘方法以提高预测准确性。模糊聚类,先验和多种支持方法的集成以开发关联的分类规则库