首页> 外文期刊>Expert Systems with Application >Fuzzy association rule mining approaches for enhancing prediction performance
【24h】

Fuzzy association rule mining approaches for enhancing prediction performance

机译:模糊关联规则挖掘方法可增强预测性能

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an investigation into two fuzzy association rule mining models for enhancing prediction performance. The first model (the FCM-Apriori model) integrates Fuzzy C-Means (FCM) and the Apriori approach for road traffic performance prediction. FCM is used to define the membership functions of fuzzy sets and the Apriori approach is employed to identify the Fuzzy Association Rules (FARs). The proposed model extracts knowledge from a database for a Fuzzy Inference System (FIS) that can be used in prediction of a future value. The knowledge extraction process and the performance of the model are demonstrated through two case studies of road traffic data sets with different sizes. The experimental results show the merits and capability of the proposed KD model in FARs based knowledge extraction. The second model (the FCM-MSapriori model) integrates FCM and a Multiple Support Apriori (MSapriori) approach to extract the FARs. These FARs provide the knowledge base to be utilized within the FIS for prediction evaluation. Experimental results have shown that the FCM-MSapriori model predicted the future values effectively and outperformed the FCM-Apriori model and other models reported in the literature.
机译:本文提出了两种模糊关联规则挖掘模型,以提高预测性能。第一个模型(FCM-Apriori模型)集成了模糊C均值(FCM)和Apriori方法来预测道路交通性能。 FCM用于定义模糊集的隶属函数,而Apriori方法用于识别模糊关联规则(FAR)。提出的模型从数据库中提取了可用于预测未来价值的模糊推理系统(FIS)的知识。通过两个不同大小的道路交通数据集的案例研究,证明了知识的提取过程和模型的性能。实验结果表明了所提出的KD模型在基于FAR的知识提取中的优点和能力。第二个模型(FCM-MSapriori模型)集成了FCM和多支持先验(MSapriori)方法以提取FAR。这些FAR提供了将在FIS中用于预测评估的知识库。实验结果表明,FCM-MSapriori模型可以有效地预测未来价值,并且优于FCM-Apriori模型和其他文献报道的模型。

著录项

  • 来源
    《Expert Systems with Application》 |2013年第17期|6928-6937|共10页
  • 作者单位

    School of Computing Informatics & Media, University of Bradford, Bradford, West Yorkshire BD7 1DP, UK;

    School of Computing Informatics & Media, University of Bradford, Bradford, West Yorkshire BD7 1DP, UK;

    Computational Intelligence Croup, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK;

    Computational Intelligence Croup, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK;

    Computational Intelligence Croup, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Apriori algorithms; Data mining; Fuzzy C-Mean; Knowledge discovery; Prediction; Fuzzy association rules;

    机译:Apriori算法;数据挖掘;模糊C均值知识发现;预测;模糊关联规则;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号