首页> 外文期刊>Expert Systems with Application >Finding academic experts on a multisensor approach using Shannon's entropy
【24h】

Finding academic experts on a multisensor approach using Shannon's entropy

机译:寻找使用香农熵的多传感器方法的学术专家

获取原文
获取原文并翻译 | 示例

摘要

Expert finding is an information retrieval task concerned with the search for the most knowledgeable people, in some topic, with basis on documents describing peoples activities. The task involves taking a user query as input and returning a list of people sorted by their level of expertise regarding the user query. This paper introduces a novel approach for combining multiple estimators of expertise based on a multisensor data fusion framework together with the Dempster-Shafer theory of evidence and Shannon's entropy. More specifically, we defined three sensors which detect heterogeneous information derived from the textual contents, from the graph structure of the citation patterns for the community of experts, and from profile information about the academic experts. Given the evidences collected, each sensor may define different candidates as experts and consequently do not agree in a final ranking decision. To deal with these conflicts, we applied the Dempster-Shafer theory of evidence combined with Shannon's Entropy formula to fuse this information and come up with a more accurate and reliable final ranking list. Experiments made over two datasets of academic publications from the Computer Science domain attest for the adequacy of the proposed approach over the traditional state of the art approaches. We also made experiments against representative supervised state of the art algorithms. Results revealed that the proposed method achieved a similar performance when compared to these supervised techniques, confirming the capabilities of the proposed framework.
机译:专家发现是一项信息检索任务,涉及在某些主题中基于描述人们活动的文档来寻找最有知识的人们。该任务涉及将用户查询作为输入,并返回按其关于用户查询的专业水平排序的人员列表。本文介绍了一种基于多传感器数据融合框架,结合Dempster-Shafer证据理论和Shannon熵,将多个专家估计量组合在一起的新颖方法。更具体地说,我们定义了三个传感器,用于检测从文本内容,专家群体的引文样式的图形结构以及学术专家的简介信息中衍生的异构信息。给定收集的证据,每个传感器可能将不同的候选人定义为专家,因此在最终的排名决策中不一致。为了解决这些冲突,我们应用了Dempster-Shafer证据理论与Shannon的熵公式相结合,以融合这些信息,并得出更准确和可靠的最终排名列表。对来自计算机科学领域的学术出版物的两个数据集进行的实验证明,所提出的方法相对于传统的最新方法是足够的。我们还针对代表性的有监督监督的最新算法进行了实验。结果表明,与这些监督技术相比,所提出的方法实现了类似的性能,证实了所提出框架的功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号