首页> 外文期刊>Expert Systems with Application >Setting forecasting model parameters using unconstrained direct search methods: An empirical evaluation
【24h】

Setting forecasting model parameters using unconstrained direct search methods: An empirical evaluation

机译:使用无限制直接搜索方法设置预测模型参数:实证评估

获取原文
获取原文并翻译 | 示例

摘要

Exponential smoothing (ES) forecasting models represent an important tool that conjugates compactness, ease of implementation, and robustness. The parameterization (i.e., the determination of the parameters) of an ES model can be represented as a (non-linear) minimization problem. A solution to the problem consists of the ES model's parameter values that minimize the forecast error. Nonetheless, the task of solving such a minimization problem represents a challenge in that it should balance the accuracy of the resulting forecasts and the computational time required, especially when the parameterization con-cerns hundreds of time series and models. Therefore, in this paper, we discuss the empirical performance of two derivative free search methods for solving the minimization problem, and compare them with other, well-assessed search procedures. In doing so, we propose an adaptation of the general exponential smoothing model to handle box-constraints on parameter values. In the computational experiments, the derivative free methods displayed a performance similar to that of a gradient-based method, requiring only a fraction of the computation effort.
机译:指数平滑(ES)预测模型代表了一种重要工具,可将紧凑性,易于实施和鲁棒性结合在一起。 ES模型的参数化(即,参数的确定)可以表示为(非线性)最小化问题。该问题的解决方案由ES模型的参数值组成,这些参数值可最大程度地减少预测误差。尽管如此,解决这样一个最小化问题的任务仍然是一个挑战,因为它应该在结果预测的准确性和所需的计算时间之间取得平衡,尤其是当参数化涉及数百个时间序列和模型时。因此,在本文中,我们讨论了两种求解最小化问题的导数自由搜索方法的经验性能,并将它们与其他经过良好评估的搜索程序进行比较。在此过程中,我们提出了通用指数平滑模型的一种改编,以处理参数值上的箱形约束。在计算实验中,无导数方法显示的性能类似于基于梯度的方法,仅需要计算工作量的一小部分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号