首页> 外文期刊>Expert Systems with Application >More than words: Social networks' text mining for consumer brand sentiments
【24h】

More than words: Social networks' text mining for consumer brand sentiments

机译:不仅仅是言语:社交网络的文本挖掘可提升消费者的品牌情感

获取原文
获取原文并翻译 | 示例

摘要

Blogs and social networks have recently become a valuable resource for mining sentiments in fields as diverse as customer relationship management, public opinion tracking and text filtering. In fact knowledge obtained from social networks such as Twitter and Facebook has been shown to be extremely valuable to marketing research companies, public opinion organizations and other text mining entities. However, Web texts have been classified as noisy as they represent considerable problems both at the lexical and the syntactic levels. In this research we used a random sample of 3516 tweets to evaluate consumers' sentiment towards well-known brands such as Nokia, T-Mobile, IBM, KLM and DHL. We used an expert-predefined lexicon including around 6800 seed adjectives with known orientation to conduct the analysis. Our results indicate a generally positive consumer sentiment towards several famous brands. By using both a qualitative and quantitative methodology to analyze brands' tweets, this study adds breadth and depth to the debate over attitudes towards cosmopolitan brands.
机译:博客和社交网络最近已成为挖掘情感​​的宝贵资源,这些领域涉及客户关系管理,民意跟踪和文本过滤。实际上,从Twitter和Facebook等社交网络获得的知识已被证明对营销研究公司,民意组织和其他文本挖掘实体非常有价值。但是,Web文本已被归类为嘈杂的,因为它们在词法和句法层面上都代表着相当大的问题。在这项研究中,我们使用了3516条推文的随机样本来评估消费者对诺基亚,T-Mobile,IBM,KLM和DHL等知名品牌的看法。我们使用了专家预定义的词典,包括大约6800个具有已知方向的种子形容词来进行分析。我们的结果表明,消费者对几个著名品牌的信心普遍良好。通过使用定性和定量方法来分析品牌推文,本研究为关于国际品牌态度的辩论增加了广度和深度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号