首页> 外文期刊>Expert Systems with Application >Differential evolution based nearest prototype classifier with optimized distance measures for the features in the data sets
【24h】

Differential evolution based nearest prototype classifier with optimized distance measures for the features in the data sets

机译:基于差分进化的最近原型分类器,对数据集中的特征进行了优化的距离度量

获取原文
获取原文并翻译 | 示例

摘要

In this paper a further generalization of differential evolution based data classification method is proposed, demonstrated and initially evaluated. The differential evolution classifier is a nearest prototype vector based classifier that applies a global optimization algorithm, differential evolution, for determining the optimal values for all free parameters of the classifier model during the training phase of the classifier. The earlier version of differential evolution classifier that applied individually optimized distance measure for each new data set to be classified is generalized here so, that instead of optimizing a single distance measure for the given data set, we take a further step by proposing an approach where distance measures are optimized individually for each feature of the data set to be classified. In particular, distance measures for each feature are selected optimally from a predefined pool of alternative distance measures. The optimal distance measures are determined by differential evolution algorithm, which is also determining the optimal values for all free parameters of the selected distance measures in parallel. After determining the optimal distance measures for each feature together with their optimal parameters, we combine all featurewisely determined distance measures to form a single total distance measure, that is to be applied for the final classification decisions. The actual classification process is still based on the nearest prototype vector principle; A sample belongs to the class represented by the nearest prototype vector when measured with the above referred optimized total distance measure. During the training process the differential evolution algorithm determines optimally the class vectors, selects optimal distance metrics for each data feature, and determines the optimal values for the free parameters of each selected distance measure. Based on experimental results with nine well known classification benchmark data sets, the proposed approach yield a statistically significant improvement to the classification accuracy of differential evolution classifier.
机译:本文提出,论证并初步评估了基于差分进化的数据分类方法的进一步推广。差分进化分类器是基于原型向量的最接近的分类器,其应用全局优化算法(差分进化),用于在分类器的训练阶段确定分类器模型的所有自由参数的最优值。此处概括了较早版本的差分进化分类器,该分类器对要分类的每个新数据集应用了单独优化的距离度量,因此,除了针对给定数据集优化单个距离度量之外,我们还采取了进一步的措施,提出了一种方法,其中距离度量针对要分类的数据集的每个特征分别进行了优化。特别是,从预定义的替代距离量度池中最佳选择每个特征的距离量度。最佳距离量度由差分进化算法确定,该算法还并行确定所选距离量度的所有自由参数的最佳值。在确定每个特征的最佳距离量度及其最佳参数后,我们将所有按特征确定的距离量度组合在一起,以形成单个总距离量度,该总距离量度将用于最终的分类决策。实际的分类过程仍然基于最接近的原型向量原理;当使用上述优化的总距离度量进行测量时,样本属于由最近的原型向量表示的类别。在训练过程中,差分进化算法可以最佳地确定类向量,为每个数据特征选择最佳距离度量,并为每个所选距离量度的自由参数确定最佳值。基于9个众所周知的分类基准数据集的实验结果,提出的方法对差分进化分类器的分类准确性产生了统计学上的显着提高。

著录项

  • 来源
    《Expert Systems with Application》 |2013年第10期|4075-4082|共8页
  • 作者单位

    Laboratory of Applied Mathematics, Lappeenranta University of Technology, P.O. Box 20, Fl-53851 Lappeenranta, Finland,University of Dar es salaam. Department of Mathematics, P.O. Box 35062, Dar es salaam, Tanzania;

    Department of Computer Science, University of Vaasa, P.O. Box 700, FI-65101 Vaasa, Finland,Department of Computer Science, VSB-Technical University of Ostrava, 17. listopadu 15, 70833 Ostrava-Poruba, Czech Republic;

    Laboratory of Applied Mathematics, Lappeenranta University of Technology, P.O. Box 20, Fl-53851 Lappeenranta, Finland,School of Business, Lappeenranta University of Technology, P.O. Box 20, Fl-53851 Lappeenranta, Finland;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    differential evolution; classification; distance measures; distance selection for the feature; pool of distances;

    机译:差异进化分类;距离测量;特征的距离选择;距离池;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号