首页> 外文期刊>Expert Systems with Application >Fault diagnosis of rolling element bearing with intrinsic mode function of acoustic emission data using APF-KNN
【24h】

Fault diagnosis of rolling element bearing with intrinsic mode function of acoustic emission data using APF-KNN

机译:基于APF-KNN的具有声发射数据固有模式功能的滚动轴承故障诊断

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a fault diagnosis technique based on acoustic emission (AE) analysis with the Hil-bert-Huang Transform (HHT) and data mining tool. HHT analyzes the AE signal using intrinsic mode functions (IMFs), which are extracted using the process of Empirical Mode Decomposition (EMD). Instead of time domain approach with Hilbert transform, FFT of IMFs from HHT process are utilized to represent the time frequency domain approach for efficient signal response from rolling element bearing. Further, extracted statistical and acoustic features are used to select proper data mining based fault classifier with or without filter. JC-nearest neighbor algorithm is observed to be more efficient classifier with default setting parameters in WEKA. APF-KNN approach, which is based on asymmetric proximity function with optimize feature selection shows better classification accuracy is used. Experimental evaluation for time frequency approach is presented for five bearing conditions such as healthy bearing, bearing with outer race, inner race, ball and combined defect. The experimental results show that the proposed method can increase reliability for the faults diagnosis of ball bearing.
机译:本文提出了一种基于声发射(AE)分析的故障诊断技术,该技术采用Hil-bert-Huang变换(HHT)和数据挖掘工具。 HHT使用固有模式函数(IMF)分析AE信号,该函数是使用经验模式分解(EMD)的过程提取的。代替使用Hilbert变换的时域方法,HHT过程的IMF的FFT被用来表示时频域方法,以实现来自滚动轴承的有效信号响应。此外,提取的统计和声学特征用于选择带有或不带有过滤器的基于数据挖掘的适当故障分类器。在WEKA中,使用默认设置参数,可以发现JC最近邻居算法是一种更有效的分类器。 APF-KNN方法基于不对称邻近函数,具有优化的特征选择,表明使用了更好的分类精度。提出了时频法对五个轴承状态的实验评估,例如健康轴承,外圈,内圈,球和组合缺陷轴承。实验结果表明,该方法可以提高滚珠轴承故障诊断的可靠性。

著录项

  • 来源
    《Expert Systems with Application》 |2013年第10期|4137-4145|共9页
  • 作者单位

    Vibration and Noise Control Lab. Mechanical and Industrial Engineering, Department Indian Institute of Technology Roorkee, Roorkee 247 667, India;

    Vibration and Noise Control Lab. Mechanical and Industrial Engineering, Department Indian Institute of Technology Roorkee, Roorkee 247 667, India;

    Vibration and Noise Control Lab. Mechanical and Industrial Engineering, Department Indian Institute of Technology Roorkee, Roorkee 247 667, India;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    acoustic emission; KNN; statistical feature; ball bearing; hilbert hung transform;

    机译:声发射KNN;统计特征;滚珠轴承希尔伯特·亨特变换;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号