首页> 外文期刊>Expert Systems with Application >Detecting near-duplicate documents using sentence-level features and supervised learning
【24h】

Detecting near-duplicate documents using sentence-level features and supervised learning

机译:使用句子级功能和监督学习来检测几乎重复的文档

获取原文
获取原文并翻译 | 示例

摘要

We present a novel method for detecting near-duplicates from a large collection of documents. Three major parts are involved in our method, feature selection, similarity measure, and discriminant derivation. To find near-duplicates to an input document, each sentence of the input document is fetched and preprocessed, the weight of each term is calculated, and the heavily weighted terms are selected to be the feature of the sentence. As a result, the input document is turned into a set of such features. A similarity measure is then applied and the similarity degree between the input document and each document in the given collection is computed. A support vector machine (SVM) is adopted to learn a discriminant function from a training pattern set, which is then employed to determine whether a document is a near-duplicate to the input document based on the similarity degree between them. The sentence-level features we adopt can better reveal the characteristics of a document. Besides, learning the discriminant function by SVM can avoid trial-and-error efforts required in conventional methods. Experimental results show that our method is effective in near-duplicate document detection.
机译:我们提出了一种新颖的方法,用于从大量的文档中检测重复项。我们的方法涉及三个主要部分:特征选择,相似性度量和判别式推导。为了找到与输入文档几乎相同的副本,需要提取并预处理输入文档的每个句子,计算每个术语的权重,然后选择权重较高的术语作为句子的特征。结果,输入文档变成一组这样的特征。然后应用相似性度量,并计算输入文档与给定集合中每个文档之间的相似度。采用支持向量机(SVM)从训练模式集中学习判别函数,然后将其用于基于文档之间的相似度来确定文档是否与输入文档几乎重复。我们采用的句子级功能可以更好地揭示文档的特征。此外,通过支持向量机学习判别函数可以避免传统方法所需的反复试验。实验结果表明,该方法在近重复文档检测中是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号