首页> 外文期刊>Expert Systems with Application >Mining frequent itemsets in large databases: The hierarchical partitioning approach
【24h】

Mining frequent itemsets in large databases: The hierarchical partitioning approach

机译:在大型数据库中挖掘频繁项集:层次划分方法

获取原文
获取原文并翻译 | 示例

摘要

Although many methods have been proposed to enhance the efficiencies of data mining, little research has been devoted to the issue of scalability - that is, the problem of mining frequent itemsets when the size of the database is very large. This study proposes a methodology, hierarchical partitioning, for mining frequent itemsets in large databases, based on a novel data structure called the Frequent Pattern List (FPL). One of the major features of the FPL is its ability to partition the database, and thus transform the database into a set of sub-databases of manageable sizes. As a result, a divide-and-conquer approach can be developed to perform the desired data-mining tasks. Experimental results show that hierarchical partitioning is capable of mining frequent itemsets and frequent closed itemsets in very large databases.
机译:尽管已提出了许多方法来提高数据挖掘的效率,但很少有研究致力于可伸缩性问题,即在数据库规模很大时挖掘频繁项集的问题。这项研究基于一种称为“频繁模式列表”(FPL)的新型数据结构,提出了一种用于分层挖掘大型数据库中频繁项目集的方法。 FPL的主要功能之一是它具有对数据库进行分区的能力,因此可以将数据库转换为一组可管理大小的子数据库。结果,可以开发分而治之的方法来执行所需的数据挖掘任务。实验结果表明,分层分区能够在大型数据库中挖掘频繁项目集和频繁关闭项目集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号