首页> 外文期刊>Expert Systems with Application >A new method for mining Frequent Weighted Itemsets based on WIT-trees
【24h】

A new method for mining Frequent Weighted Itemsets based on WIT-trees

机译:基于WIT树的频繁加权项集挖掘新方法

获取原文
获取原文并翻译 | 示例

摘要

The mining frequent itemsets plays an important role in the mining of association rules. Frequent item-sets are typically mined from binary databases where each item in a transaction may have a different significance. Mining Frequent Weighted Itemsets (FWI) from weighted items transaction databases addresses this issue. This paper therefore proposes algorithms for the fast mining of FWI from weighted item transaction databases. Firstly, an algorithm for directly mining FWI using WIT-trees is presented. After that, some theorems are developed concerning the fast mining of FWI. Based on these theorems, an advanced algorithm for mining FWI is proposed. Finally, a Diffset strategy for the efficient computation of the weighted support for itemsets is described, and an algorithm for mining FWI using Diffsets presented. A complete evaluation of the proposed algorithms is also presented.
机译:频繁项集的挖掘在关联规则的挖掘中起着重要的作用。通常从二进制数据库中挖掘频繁的项目集,其中交易中的每个项目可能具有不同的重要性。从加权项目交易数据库中挖掘频繁加权项目集(FWI)解决了此问题。因此,本文提出了从加权项目交易数据库中快速挖掘FWI的算法。首先,提出了一种使用WIT树直接挖掘FWI的算法。在那之后,一些关于FWI快速挖掘的定理被提出。基于这些定理,提出了一种先进的FWI挖掘算法。最后,描述了用于有效计算项目集的加权支持的Diffset策略,并提出了一种使用Diffsets挖掘FWI的算法。还提出了对所提出算法的完整评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号