首页> 外文期刊>Expert Systems with Application >Computer techniques towards the automatic characterization of graphite particles in metallographic images of industrial materials
【24h】

Computer techniques towards the automatic characterization of graphite particles in metallographic images of industrial materials

机译:用于自动表征工业材料金相图像中石墨颗粒的计算机技术

获取原文
获取原文并翻译 | 示例

摘要

The automatic characterization of particles in metallographic images has been paramount, mainly because of the importance of quantifying such microstructures in order to assess the mechanical properties of materials common used in industry. This automated characterization may avoid problems related with fatigue and possible measurement errors. In this paper, computer techniques are used and assessed towards the accomplishment of this crucial industrial goal in an efficient and robust manner. Hence, the use of the most actively pursued machine learning classification techniques. In particularity, Support Vector Machine, Bayesian and Optimum-Path Forest based classifiers, and also the Otsu's method, which is commonly used in computer imaging to binarize automatically simply images and used here to demonstrated the need for more complex methods, are evaluated in the characterization of graphite particles in metallographic images. The statistical based analysis performed confirmed that these computer techniques are efficient solutions to accomplish the aimed characterization. Additionally, the Optimum-Path Forest based classifier demonstrated an overall superior performance, both in terms of accuracy and speed.
机译:金相图像中颗粒的自动表征至关重要,这主要是因为量化此类微结构以评估工业中常用材料的机械性能的重要性。这种自动表征可以避免与疲劳有关的问题和可能的测量误差。在本文中,使用计算机技术并对其进行了有效而稳健的实现,以实现这一关键的工业目标。因此,使用最积极追求的机器学习分类技术。特别是,在评估中评估了基于支持向量机,贝叶斯和最优路径森林的分类器,以及在计算机成像中通常用于自动对简单图像进行二值化的Otsu方法,并在此处用于证明需要更复杂的方法。金相图像中石墨颗粒的表征。进行的基于统计的分析证实,这些计算机技术是实现目标特性的有效解决方案。此外,基于Optimum-Path Forest的分类器在准确性和速度方面都表现出总体上优越的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号