首页> 外文期刊>Expert Systems with Application >Computational intelligence for heart disease diagnosis: A medical knowledge driven approach
【24h】

Computational intelligence for heart disease diagnosis: A medical knowledge driven approach

机译:心脏病诊断的计算智能:一种医学知识驱动的方法

获取原文
获取原文并翻译 | 示例

摘要

This paper investigates a number of computational intelligence techniques in the detection of heart disease. Particularly, comparison of six well known classifiers for the well used Cleveland data is performed. Further, this paper highlights the potential of an expert judgment based (i.e., medical knowledge driven) feature selection process (termed as MFS), and compare against the generally employed computational intelligence based feature selection mechanism. Also, this article recognizes that the publicly available Cleveland data becomes imbalanced when considering binary classification. Performance of classifiers, and also the potential of MFS are investigated considering this imbalanced data issue. The experimental results demonstrate that the use of MFS noticeably improved the performance, especially in terms of accuracy, for most of the classifiers considered and for majority of the datasets (generated by converting the Cleveland dataset for binary classification). MFS combined with the computerized feature selection process (CFS) has also been investigated and showed encouraging results particularly for NaiveBayes, IBK and SMO. In summary, the medical knowledge based feature selection method has shown promise for use in heart disease diagnostics.
机译:本文研究了用于检测心脏病的多种计算智能技术。尤其是,针对使用得很好的克利夫兰数据执行了六个众所周知的分类器的比较。此外,本文重点介绍了基于专家判断(即医学知识驱动)的特征选择过程(称为MFS)的潜力,并与常用的基于计算智能的特征选择机制进行了比较。此外,本文还认识到,在考虑二进制分类时,公开的克利夫兰数据变得不平衡。考虑到这种不平衡的数据问题,研究了分类器的性能以及MFS的潜力。实验结果表明,对于大多数考虑的分类器和大多数数据集(通过转换Cleveland数据集进行二进制分类生成),使用MFS可以显着提高性能,尤其是在准确性方面。结合计算机特征选择过程(CFS)的MFS也已进行了调查,并显示出令人鼓舞的结果,特别是对于NaiveBayes,IBK和SMO。总而言之,基于医学知识的特征选择方法已显示出在心脏病诊断中的应用前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号