首页> 外文期刊>Expert Systems with Application >A robust arbitrary text detection system for natural scene images
【24h】

A robust arbitrary text detection system for natural scene images

机译:强大的自然场景图像任意文本检测系统

获取原文
获取原文并翻译 | 示例

摘要

Text detection in the real world images captured in unconstrained environment is an important yet challenging computer vision problem due to a great variety of appearances, cluttered background, and character orientations. In this paper, we present a robust system based on the concepts of Mutual Direction Symmetry (MDS), Mutual Magnitude Symmetry (MMS) and Gradient Vector Symmetry (GVS) properties to identify text pixel candidates regardless of any orientations including curves (e.g. circles, arc shaped) from natural scene images. The method works based on the fact that the text patterns in both Sobel and Canny edge maps of the input images exhibit a similar behavior. For each text pixel candidate, the method proposes to explore SIFT features to refine the text pixel candidates, which results in text representatives. Next an ellipse growing process is introduced based on a nearest neighbor criterion to extract the text components. The text is verified and restored based on text direction and spatial study of pixel distribution of components to filter out non-text components. The proposed method is evaluated on three benchmark datasets, namely, ICDAR2005 and ICDAR2011 for horizontal text evaluation, MSRA-TD500 for non-horizontal straight text evaluation and on our own dataset (CUTE80) that consists of 80 images for curved text evaluation to show its effectiveness and superiority over existing methods.
机译:由于外观,背景杂乱和字符方向多种多样,在不受限制的环境中捕获的真实世界图像中的文本检测是一个重要而又具有挑战性的计算机视觉问题。在本文中,我们提出了一个基于互方向对称(MDS),互幅度对称(MMS)和梯度矢量对称(GVS)属性概念的健壮系统,可识别文本像素候选对象,而不管包括曲线(例如,圆,弧形)。该方法基于以下事实工作:输入图像的Sobel边缘图和Canny边缘图中的文本模式都表现出相似的行为。对于每个文本像素候选者,该方法建议探索SIFT特征以细化文本像素候选者,从而产生文本代表。接下来,基于最近邻准则引入椭圆生长过程以提取文本成分。基于文本方向和对组件像素分布的空间研究,对文本进行验证和还原,以过滤掉非文本组件。该方法在三个基准数据集上进行了评估,即用于水平文本评估的ICDAR2005和ICDAR2011,用于非水平直文本评估的MSRA-TD500以及在我们自己的数据集(CUTE80)上,该数据集包含80个用于弯曲文本评估的图像以显示其有效性和优于现有方法的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号