首页> 外文期刊>Expert Systems with Application >A reinforcement learning optimized negotiation method based on mediator agent
【24h】

A reinforcement learning optimized negotiation method based on mediator agent

机译:基于中介代理的强化学习优化协商方法

获取原文
获取原文并翻译 | 示例

摘要

This paper firstly proposes a bilateral optimized negotiation model based on reinforcement learning. This model negotiates on the issue price and the quantity, introducing a mediator agent as the mediation mechanism, and uses the improved reinforcement learning negotiation strategy to produce the optimal proposal. In order to further improve the performance of negotiation, this paper then proposes a negotiation method based on the adaptive learning of mediator agent. The simulation results show that the proposed negotiation methods make the efficiency and the performance of the negotiation get improved.
机译:本文首先提出了一种基于强化学习的双边优化协商模型。该模型对发行价格和数量进行谈判,引入中介代理作为中介机制,并使用改进的强化学习谈判策略来产生最优建议。为了进一步提高协商的性能,本文提出了一种基于自适应学习中介者的协商方法。仿真结果表明,所提出的协商方法可以提高协商的效率和性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号