首页> 外文期刊>Expert Systems with Application >A modified Intelligent Water Drops algorithm and its application to optimization problems
【24h】

A modified Intelligent Water Drops algorithm and its application to optimization problems

机译:改进的智能水滴算法及其在优化问题中的应用

获取原文
获取原文并翻译 | 示例

摘要

The Intelligent Water Drop (IWD) algorithm is a recent stochastic swarm-based method that is useful for solving combinatorial and function optimization problems. In this paper, we investigate the effectiveness of the selection method in the solution construction phase of the IWD algorithm. Instead of the fitness proportionate selection method in the original IWD algorithm, two ranking-based selection methods, namely linear ranking and exponential ranking, are proposed. Both ranking-based selection methods aim to solve the identified limitations of the fitness proportionate selection method as well as to enable the IWD algorithm to escape from local optima and ensure its search diversity. To evaluate the usefulness of the proposed ranking-based selection methods, a series of experiments pertaining to three combinatorial optimization problems, i.e., rough set feature subset selection, multiple knapsack and travelling salesman problems, is conducted. The results demonstrate that the exponential ranking selection method is able to preserve the search diversity, therefore improving the performance of the IWD algorithm.
机译:智能水滴(IWD)算法是一种最近的基于随机群的方法,可用于解决组合和功能优化问题。在本文中,我们研究了选择方法在IWD算法求解构造阶段的有效性。代替原始的IWD算法中的适应度比例选择方法,提出了两种基于排名的选择方法,即线性排名和指数排名。两种基于排名的选择方法均旨在解决适应度比例选择方法的已确定限制,并使IWD算法能够摆脱局部最优并确保其搜索多样性。为了评估所提出的基于排名的选择方法的有效性,进行了与三个组合优化问题有关的一系列实验,即粗糙集特征子集选择,多个背包问题和旅行商问题。结果表明,指数排序选择方法能够保留搜索多样性,从而提高了IWD算法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号