首页> 外文期刊>Expert Systems with Application >The assessment of evolutionary algorithms for analyzing the positional accuracy and uncertainty of maps
【24h】

The assessment of evolutionary algorithms for analyzing the positional accuracy and uncertainty of maps

机译:评估用于分析地图位置准确性和不确定性的进化算法的评估

获取原文
获取原文并翻译 | 示例

摘要

Pre-geodetic maps are an important part of our cultural heritage and a potential source of information for historical studies. Historical cartography should be evaluated in terms of precision and uncertainty prior to their use in any application. In the last decade, the majority of papers that address multi-objective optimization employed the concept of Pareto optimality. The goal of Pareto-based multi-objective strategies is to generate a front (set) of nondominated solutions as an approximation to the true Pareto-optimal front. This article proposes a solution for the problems of multi-objective accuracy and uncertainty analysis of pre-geodetic maps using four Pareto-based multi-objective evolutionary algorithms: HVSEA, NSCAII, SPEAII and msPESA. "The Geographic Atlas of Spain (AGE)" by Tomas Lopez in 1804 provides the cartography for this study. The results obtained from the data collected from the kingdoms of Extrema-dura and Aragon, sheets of maps (54-55-56-57) and (70-71-72-73), respectively, demonstrate the advantages of these multi-objective approaches compared with classical methods. The results show that the removal of 8% of the towns it is possible to obtain improvements of approximately 30% for HVSEA, msPESA and NSGAII. The comparison of these algorithms indicates that the majority of nondominated solutions obtained by NSGAII dominate the solutions obtained by msPESA and HVSEA; however, msPESA and HVSEA obtain acceptable extreme solutions in some instances. The Pareto fronts based on multi-objective evolutionary algorithms (MOEAs) are a better alternative when the uncertainty of map analyzed is high or unknown. Consequently, Pareto-based multi-objective evolutionary algorithms establish new perspectives for analyzing the positional accuracy and uncertainty of maps.
机译:大地前地图是我们文化遗产的重要组成部分,也是历史研究的潜在信息来源。在将制图用于任何应用程序之前,应先对其准确性和不确定性进行评估。在过去的十年中,大多数涉及多目标优化的论文都采用了帕累托最优的概念。基于帕累托的多目标策略的目标是生成一个非支配解的前沿(集合),以近似于真正的帕累托最优前沿。本文使用四种基于帕累托的多目标进化算法:HVSEA,NSCAII,SPEAII和msPESA,针对大地测量前地图的多目标精度和不确定性分析问题提出了解决方案。托马斯·洛佩兹(Tomas Lopez)在1804年撰写的“西班牙地理地图集(AGE)”为这项研究提供了地图。从埃斯特雷玛-杜拉(Extrema-dura)和阿拉贡(Aragon)王国收集的数据中获得的结果分别来自地图(54-55-56-57)和(70-71-72-73),这证明了这些多目标的优势与经典方法相比。结果表明,拆除8%的城镇可以使HVSEA,msPESA和NSGAII大约提高30%。这些算法的比较表明,NSGAII获得的大多数非支配解都主导了msPESA和HVSEA获得的解。但是,在某些情况下,msPESA和HVSEA会获得可接受的极端解决方案。当分析的地图的不确定性很高或未知时,基于多目标进化算法(MOEA)的Pareto前沿是更好的选择。因此,基于帕累托的多目标进化算法为分析地图的位置准确性和不确定性建立了新的视角。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号