首页> 外文期刊>Expert Systems with Application >A novel intrusion detection system based on feature generation with visualization strategy
【24h】

A novel intrusion detection system based on feature generation with visualization strategy

机译:一种基于特征生成和可视化策略的新型入侵检测系统

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a four-angle-star based visualized feature generation approach, FASVFG, is proposed to evaluate the distance between samples in a 5-class classification problem. Based on the four angle star image, numerical features are generated for network visit data from KDDcup99, and an efficient intrusion detection system with less features is proposed. The FASVFG-based classifier achieves a high generalization accuracy of 94.3555% in validation experiment, and the average Mathews correlation coefficient reaches 0.8858.
机译:在本文中,提出了一种基于四角星的可视化特征生成方法FASVFG,以评估5类分类问题中样本之间的距离。基于四角星图像,为来自KDDcup99的网络访问数据生成数值特征,并提出了一种具有较少特征的有效入侵检测系统。基于FASVFG的分类器在验证实验中达到94.3555%的较高泛化精度,平均Mathews相关系数达到0.8858。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号