首页> 外文期刊>Expert Systems with Application >High utility itemset mining with techniques for reducing overestimated utilities and pruning candidates
【24h】

High utility itemset mining with techniques for reducing overestimated utilities and pruning candidates

机译:高实用性项目集挖掘,其技术可减少高估的实用性并修剪候选对象

获取原文
获取原文并翻译 | 示例

摘要

High utility itemset mining considers the importance of items such as profit and item quantities in transactions. Recently, mining high utility itemsets has emerged as one of the most significant research issues due to a huge range of real world applications such as retail market data analysis and stock market prediction. Although many relevant algorithms have been proposed in recent years, they incur the problem of generating a large number of candidate itemsets. which degrade mining performance. In this paper, we propose an algorithm named MU-Growth (Maximum Utility Growth) with two techniques for pruning candidates effectively in mining process. Moreover, we suggest a tree structure, named MIQ-Tree (Maximum Item Quantity Tree), which captures database information with a single-pass. The proposed data structure is restructured for reducing overestimated utilities. Performance evaluation shows that MU-Growth not only decreases the number of candidates but also outperforms state-of-the-art tree-based algorithms with overestimated methods in terms of runtime with a similar memory usage.
机译:高实用性项目集挖掘考虑了交易中利润和项目数量等项目的重要性。最近,由于零售市场数据分析和股票市场预测等大量实际应用,挖掘高实用性项目集已成为最重要的研究问题之一。尽管近年来已经提出了许多相关算法,但是它们引起生成大量候选项目集的问题。这会降低采矿性能。在本文中,我们提出了一种名为MU-Growth(最大效用增长)的算法,该算法具有两种技术,可在采矿过程中有效修剪候选对象。此外,我们建议使用一种名为MIQ-Tree(最大项目数量树)的树结构,该结构可以单次捕获数据库信息。所建议的数据结构经过重组,以减少高估的实用程序。性能评估表明,MU-Growth不仅减少了候选对象的数量,而且在类似内存使用情况的运行时方面,其高估方法的性能优于基于树的最新算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号