首页> 外文期刊>Expert Systems with Application >Detecting online auction shilling frauds using supervised learning
【24h】

Detecting online auction shilling frauds using supervised learning

机译:使用监督学习检测在线拍卖先令欺诈

获取原文
获取原文并翻译 | 示例

摘要

Online auction sites are a target for fraud due to their anonymity, number of potential targets and low likelihood of identification. Researchers have developed methods for identifying fraud. However, these methods must be individually tailored for each type of fraud, since each differs in the characteristics important for their identification. Using supervised learning methods, it is possible to produce classifiers for specific types of fraud by providing a dataset where instances with behaviours of interest are assigned to a separate class. However this requires multiple labelled datasets: one for each fraud type of interest. It is difficult to use real-world datasets for this purpose since they are difficult to label, often limited in size, and contain zero or multiple suspicious behaviours that may or may not be under investigation. The aims of this work are to: (1) demonstrate the approach of using supervised learning together with a validated synthetic data generator to create fraud detection models that are experimentally more accurate than existing methods and that is effective over real data, and (2) to evaluate a set of features for use in general fraud detection is shown to further improve the performance of the created detection models. The approach is as follows: the data generator is an agent-based simulation modelled on users in commercial online auction data. The simulation is extended using fraud agents which model a known type of online auction fraud called competitive shilling. These agents are added to the simulation to produce the synthetic datasets. Features extracted from this data are used as training data for supervised learning. Using this approach, we optimise an existing fraud detection algorithm, and produce classifiers capable of detecting shilling fraud. Experimental results with synthetic data show the new models have significant improvements in detection accuracy. Results with commercial data show the models identify users with suspicious behaviour.
机译:在线拍卖网站由于其匿名性,潜在目标的数量以及较低的识别可能性而成为欺诈的目标。研究人员已经开发出识别欺诈的方法。但是,这些方法必须针对每种欺诈类型分别进行调整,因为每种方法在识别它们的重要特征上都不同。使用监督学习方法,可以通过提供将感兴趣行为的实例分配给单独类别的数据集来生成针对特定类型欺诈的分类器。但是,这需要多个标记的数据集:针对每种感兴趣的欺诈类型一个。为此,很难使用现实世界的数据集,因为它们很难标记,通常大小有限,并且包含零个或多个可能正在或可能未进行调查的可疑行为。这项工作的目的是:(1)演示使用监督学习和经过验证的合成数据生成器来创建欺诈检测模型的方法,该模型在实验上比现有方法更准确,并且对真实数据有效;以及(2)评估了一组用于一般欺诈检测的功能,以进一步改善创建的检测模型的性能。该方法如下:数据生成器是基于代理的模拟,其基于商业在线拍卖数据中的用户建模。使用欺诈代理对模拟进行扩展,该欺诈代理对已知类型的在线拍卖欺诈(称为竞争先令)进行建模。将这些代理添加到模拟中以生成综合数据集。从该数据中提取的特征用作监督学习的训练数据。使用这种方法,我们优化了现有的欺诈检测算法,并生成了能够检测先令欺诈的分类器。综合数据的实验结果表明,新模型在检测精度上有显着提高。商业数据的结果表明,这些模型可以识别具有可疑行为的用户。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号