首页> 外文期刊>Expert Systems with Application >Multi-satellite control resource scheduling based on ant colony optimization
【24h】

Multi-satellite control resource scheduling based on ant colony optimization

机译:基于蚁群优化的多卫星控制资源调度

获取原文
获取原文并翻译 | 示例

摘要

The multi-satellite control resource scheduling problem (MSCRSP) is a kind of large-scale combinatorial optimization problem. As the solution space of the problem is sparse, the optimization process is very complicated. Ant colony optimization as one of heuristic method is wildly used by other researchers to solve many practical problems. An algorithm of multi-satellite control resource scheduling problem based on ant colony optimization (MSCRSP-ACO) is presented in this paper. The main idea of MSCRSP-ACO is that pheromone trail update by two stages to avoid algorithm trapping into local optima. The main procedures of this algorithm contain three processes. Firstly, the data get by satellite control center should be preprocessed according to visible arcs. Secondly, aiming to minimize the working burden as optimization objective, the optimization model of MSCRSP, called complex independent set model (C1SM), is developed based on visible arcs and working periods. Ant colony algorithm can be used directly to solve CISM. Lastly, a novel ant colony algorithm, called MSCRSP-ACO, is applied to CISM. From the definition of pheromone and heuristic information to the updating strategy of pheromone is described detailed. The effect of parameters on the algorithm performance is also studied by experimental method. The experiment results demonstrate that the global exploration ability and solution quality of the MSCRSP-ACO is superior to existed algorithms such as genetic algorithm, iterative repair algorithm and max-min ant system.
机译:多卫星控制资源调度问题(MSCRSP)是一种大规模的组合优化问题。由于问题的解决空间很小,因此优化过程非常复杂。蚁群优化作为一种​​启发式方法被其他研究人员广泛地用于解决许多实际问题。提出了一种基于蚁群优化的多卫星控制资源调度问题算法(MSCRSP-ACO)。 MSCRSP-ACO的主要思想是信息素追踪分两个阶段进行更新,以避免算法陷入局部最优状态。该算法的主要过程包含三个过程。首先,应根据可见弧对卫星控制中心获取的数据进行预处理。其次,以最小化工作负担为优化目标,基于可见弧和工作周期,开发了MSCRSP优化模型,称为复杂独立集模型(C1SM)。蚁群算法可直接用于求解CISM。最后,将一种新颖的蚁群算法MSCRSP-ACO应用于CISM。从信息素的定义和启发式信息到信息素的更新策略进行了详细描述。还通过实验方法研究了参数对算法性能的影响。实验结果表明,MSCRSP-ACO的全局探索能力和解决方案质量优于遗传算法,迭代修复算法和最大最小化系统等现有算法。

著录项

  • 来源
    《Expert Systems with Application》 |2014年第6期|2816-2823|共8页
  • 作者单位

    School of Electrical Engineering and Automation, jiangsu Normal University, Xuzhou, Jiangsu 221116, China;

    School of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China;

    State Key Laboratory for Manufacturing Systems Engineering, Systems Engineering Institute, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Ant colony optimization; Visible arc; Complex independent set model; Two stages;

    机译:蚁群优化;可见弧;复杂的独立集合模型;两个阶段;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号