首页> 外文期刊>Expert Systems with Application >The Windows-Users and -Intruder simulations Logs dataset (WUIL): An experimental framework for masquerade detection mechanisms
【24h】

The Windows-Users and -Intruder simulations Logs dataset (WUIL): An experimental framework for masquerade detection mechanisms

机译:Windows用户和入侵者模拟日志数据集(WUIL):伪装检测机制的实验框架

获取原文
获取原文并翻译 | 示例

摘要

We introduce a new masquerade dataset, called Windows-Users and -Intruder simulations Logs (WUIL), which, unlike existing datasets, involves more faithful masquerade attempts. While building WUIL, we have worked under the hypothesis that the way in which a user navigates her file system structure can neatly separate a masquerade attack. Thus, departing from standard practice, we state that it is not a user action, but the object upon which the action is carried out what distinguishes user participation. We shall argue that this approach, based on file system navigation provides a richer means, and at a higher-level of abstraction, for building novel models for masquerade detection. We shall devote an important part of this paper to describe WUIL's content: what information about user activity is stored and how it is represented; prominent characteristics of the participant users; the kinds of masquerade attacks to be timely detected; and the way they have been simulated. We shall argue that WUIL provides reliable data for experimenting on close to real-life instances of masquerade detection, as well as for conducting fair comparisons on rival detection mechanisms, hoping it will be of use to the research community. As a side contribution of this paper, we use WUIL to conduct a simple comparison of two masquerade detection methods: one based on SVM, and the other based on KNN. While this comparison experiment is not central to the paper, we expect it to motivate research exploring deeper the masquerade detection problem, and spreading the use of WUIL In a similar vein, we provide directions for further research, hinting on how to use the features contained in WUIL, and hoping others would find them appealing.
机译:我们引入了一个新的伪装数据集,称为Windows-Users和-Intruder Simulations Logs(WUIL),与现有数据集不同,它涉及更多忠实的伪装尝试。在构建WUIL时,我们一直在以下假设下工作:用户导航其文件系统结构的方式可以整齐地伪装攻击。因此,背离标准惯例,我们声明这不是用户动作,而是区别于用户参与的执行动作的对象。我们将争辩说,这种基于文件系统导航的方法为构建伪装检测的新颖模型提供了更丰富的手段,并且具有更高的抽象水平。我们将在本文的重要部分描述WUIL的内容:存储有关用户活动的信息及其表示方式;参与用户的突出特征;及时发现各种化装舞会;以及它们的模拟方式。我们将争辩说,WUIL提供了可靠的数据,用于在接近现实生活中的假面舞者检测实例上进行实验,以及对竞争对手的检测机制进行公平的比较,希望它将对研究界有用。作为本文的附带贡献,我们使用WUIL对两种伪装检测方法进行简单比较:一种基于SVM,另一种基于KNN。尽管此比较实验不是本文的重点,但我们希望它能激发研究人员更深入地探查假装检测问题,并推广WUIL的使用。与此类似,我们提供了进一步研究的方向,暗示了如何使用其中包含的功能在WUIL中,希望其他人能吸引他们。

著录项

  • 来源
    《Expert Systems with Application》 |2014年第3期|919-930|共12页
  • 作者单位

    Computer Science Department, Tecnologico de Monterrey, Campus Estado de Mexico, Carretera al Logo de Guadalupe Km. 3-5, Atizapan, Estado de Mexico 52926, Mexico;

    Computer Science Department, Tecnologico de Monterrey, Campus Estado de Mexico, Carretera al Logo de Guadalupe Km. 3-5, Atizapan, Estado de Mexico 52926, Mexico;

    Computer Science Department, Tecnologico de Monterrey, Campus Estado de Mexico, Carretera al Logo de Guadalupe Km. 3-5, Atizapan, Estado de Mexico 52926, Mexico;

    Computer Science Department, Tecnologico de Monterrey, Campus Estado de Mexico, Carretera al Logo de Guadalupe Km. 3-5, Atizapan, Estado de Mexico 52926, Mexico;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Masquerade dataset; Masquerade detection; Computer security;

    机译:化妆舞会数据集;假面舞会检测;电脑安全;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号