首页> 外文期刊>Expert Systems with Application >ROUND: Walking on an object-user heterogeneous network for personalized recommendations
【24h】

ROUND: Walking on an object-user heterogeneous network for personalized recommendations

机译:圆形:在对象-用户异构网络上行走以获得个性化推荐

获取原文
获取原文并翻译 | 示例

摘要

The rapid growth of the world-wide-web has been challenging information sciences for the effective screening of useful information from a vast amount of online resources. Although recent studies have suggested that recommendation approaches relying on the concept of complex networks usually exhibit excellent performance, there still lacks a unified framework to guide the design of a recommender system from the viewpoint of network inference. Besides, two critical questions fora network-based approach, the quality of the objectuser network and the measure of the strength of association between an object node and a user node in such a network, are still not systematically explored in existing studies. Aiming to answer these questions, here we introduce a general framework for network-based top-N recommendation and propose a novel method named ROUND that integrates (i) relationships among objects, (ii) relationships among users, and (iii) relationships between objects and users, in a single network model. We adopt a k-nearest neighbor strategy to filter out unreliable connections in the network, and we use a random walk with restart model to characterize the strength of associations between object nodes and user nodes, thereby making significant progress in addressing the critical questions in network-based recommendation. We demonstrate the effectiveness of our method via large-scale cross-validation experiments across two real datasets (MovieLens and Netflix) and show the superiority of our method over such state-of-the-art approaches as non-negative matrix factorization and singular value decomposition in terms of not only recommendation accuracy and diversity but also retrieval performance. (C) 2015 Elsevier Ltd. All rights reserved.
机译:互联网的快速发展一直对信息科学提出挑战,以从大量的在线资源中有效筛选有用的信息。尽管最近的研究表明,依赖于复杂网络概念的推荐方法通常表现出出色的性能,但是从网络推理的角度来看,仍然缺乏一个统一的框架来指导推荐系统的设计。此外,基于网络的方法的两个关键问题,即对象用户网络的质量以及这种网络中对象节点与用户节点之间的关联强度的度量,在现有研究中仍未系统地进行探索。为了回答这些问题,我们在此介绍基于网络的前N个推荐的通用框架,并提出一种名为ROUND的新颖方法,该方法集成了(i)对象之间的关系,(ii)用户之间的关系以及(iii)对象之间的关系和用户,在一个单一的网络模型中。我们采用k最近邻策略来过滤网络中不可靠的连接,并使用带有重启的随机游走模型来表征对象节点和用户节点之间的关联强度,从而在解决网络中的关键问题方面取得了重大进展基于推荐。我们通过在两个真实数据集(MovieLens和Netflix)上进行的大规模交叉验证实验证明了我们方法的有效性,并展示了我们的方法相对于诸如非负矩阵分解和奇异值之类的最新方法的优越性分解不仅在推荐准确性和多样性方面,而且在检索性能方面。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号