首页> 外文期刊>Expert Systems with Application >ISTS: Implicit social trust and sentiment based approach to recommender systems
【24h】

ISTS: Implicit social trust and sentiment based approach to recommender systems

机译:ISTS:基于隐性社会信任和基于情感的推荐系统方法

获取原文
获取原文并翻译 | 示例

摘要

We propose a novel personalized Recommender System (RS) framework, so-called Implicit Social Trust and Sentiment (ISTS) based RS which draws user preferences by exploring the user's Online Social Networks (OSNs). This approach overcomes the overlooked use of OSNs in Recommender Systems (RSs) and utilizes the widely available information from such networks. Bearing in mind that a user's selection is greatly influenced by his/her trusted friends and their opinions, this paper presents a framework to apply a new source of data to personalise recommendations by mining their friends' short text posts in microbloggings. ISTS maps suggested recommendations into numerical rating scales by applying three main components: (1) measuring the implicit trust between friends based on the intercommunication activities; (2) inferring the sentiment rating to reflect the knowledge behind friends' short posts, so-called micro-reviews, using sentiment techniques adding several ONSs language features to empower the extracted sentiment; (3) identifying the impact degree of trust level between friends and sentiment rating from micro-reviews on recommendations by using machine learning regression algorithms including linear regression, random forest and support vector regression (SVR). Our framework takes into consideration the semantic relationships between rating categories when estimating ratings to users. Empirical results, using real social data from Twitter microblogger, verified the effectiveness and promises of ISTS. (C) 2015 Elsevier Ltd. All rights reserved.
机译:我们提出了一种新颖的个性化推荐系统(RS)框架,即所谓的基于隐式社交信任和情感(ISTS)的RS,它可以通过探索用户的在线社交网络(OSN)来吸引用户的偏好。这种方法克服了推荐系统(RS)中OSN的使用被忽视的问题,并利用了来自此类网络的广泛可用信息。考虑到用户的选择受其信任的朋友和他们的意见的影响很大,本文提出了一个框架,该框架可通过在微博中挖掘其朋友的短文来应用新的数据源来个性化推荐。 ISTS通过应用三个主要组成部分将建议的建议映射到数字评分量表中:(1)根据互通活动来衡量朋友之间的隐式信任; (2)通过使用情感技术添加几种ONS语言功能以推断出的情感,推断情感等级以反映朋友短帖子背后的知识,即所谓的微观评论。 (3)使用包括线性回归,随机森林和支持向量回归(SVR)在内的机器学习回归算法,从对建议的微观评价中确定朋友之间信任度和情感等级的影响程度。我们的框架在估算用户的评分时会考虑评分类别之间的语义关系。使用来自Twitter微博的真实社交数据的实证结果验证了ISTS的有效性和前景。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号