首页> 外文期刊>Expert Systems with Application >Methodology based on genetic heuristics for in-vivo characterizing the patient-specific biomechanical behavior of the breast tissues
【24h】

Methodology based on genetic heuristics for in-vivo characterizing the patient-specific biomechanical behavior of the breast tissues

机译:基于遗传启发法的体内表征乳腺组织患者特定生物力学行为的方法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a novel methodology to in-vivo estimate the elastic constants of a constitutive model proposed to characterize the mechanical behavior of the breast tissues. An iterative search algorithm based on genetic heuristics was constructed to in-vivo estimate these parameters using only medical images, thus avoiding invasive measurements of the mechanical response of the breast tissues. For the first time, a combination of overlap and distance coefficients were used for the evaluation of the similarity between a deformed MRI of the breast and a simulation of that deformation. The methodology was validated using breast software phantoms for virtual clinical trials, compressed to mimic MRI-guided biopsies. The biomechanical model chosen to characterize the breast tissues was an anisotropic neo-Hookean hyperelastic model. Results from this analysis showed that the algorithm is able to find the elastic constants of the constitutive equations of the proposed model with a mean relative error of about 10%. Furthermore, the overlap between the reference deformation and the simulated deformation was of around 95% showing the good performance of the proposed methodology. This methodology can be easily extended to characterize the real biomechanical behavior of the breast tissues, which means a great novelty in the field of the simulation of the breast behavior for applications such as surgical planing, surgical guidance or cancer diagnosis. This reveals the impact and relevance of the presented work. (C) 2015 Elsevier Ltd. All rights reserved.
机译:本文提出了一种新颖的方法来体内估算本构模型的弹性常数,该本构模型旨在表征乳腺组织的机械行为。构建了一种基于遗传启发式的迭代搜索算法,以仅使用医学图像在体内估算这些参数,从而避免了对乳房组织机械反应的侵入式测量。第一次,重叠系数和距离系数的组合用于评估乳房变形MRI与该变形的模拟之间的相似性。该方法已使用胸部软件模型进行了虚拟临床试验验证,并压缩以模仿MRI引导的活检。选择来表征乳腺组织的生物力学模型是各向异性的新Hookean超弹性模型。分析结果表明,该算法能够找到所提出模型的本构方程的弹性常数,其平均相对误差约为10%。此外,参考变形和模拟变形之间的重叠约为95%,显示了所提出方法的良好性能。该方法可以轻松扩展以表征乳腺组织的真实生物力学行为,这意味着在诸如手术计划,手术指导或癌症诊断等应用的乳腺行为仿真领域中,这是一个巨大的新颖性。这揭示了所提出工作的影响和相关性。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号